• Title/Summary/Keyword: non-cooking oils

Search Result 6, Processing Time 0.02 seconds

Biodegradation Rate of Recycling Soap Prepared from Non-Cooking Oils (폐식용유로 제조된 재생비누의 생분해 속도)

  • 신춘환;김희숙;허근태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A recycling soap was prepared from non-cooking oils. The effects of physlcal and chemical properties of the recycling soap on biodegradation are expected to be different due to the thermal histories of the non-cooking oils. Therefore, the biodegradation rate of the recycling soap was studied by using Klebssella Pneumoniae(K. pneumoniae), and the growth rate of K. pnewoniae in soap solution was observed. The biodegradation rate of the recycling soap appeared to be slower as the thermal histories of the non-cooking oils became larger. This might be resulted from hydrolysis, in which the ester bonds in the oils are broken to produce hydroxyl group. It was also observed that the growth rate of the microorganism decreased with the increase in the thermal histories of the oils. As a result, it is desired that recycling soap should be produced from the non-cooking oils with the prober ranges of thermal histories to reduce water contamination. The non-cooking oils with larger thermal histories are considered to be recycling through the cracking process before used. Key Words : non-cooking oils, recycling soap, thermal history, biodegradation, microorganism growth.

  • PDF

A Study on the Heated Edible Oils( I ) -Flow Properties of Soybean, Rapeseed, Rice bran, Corn and Perilla Oils- (가열식용유(加熱食用油)에 관(關)한 연구(硏究) ( I ) -대두(大豆), 채종(菜種), 미당(米糖), 옥수수, 들깨유(油) 유동성(流動性) 관(關)해서-)

  • Kim, Eun-Ae;Shin, Kab-Choul;Kim, Haeng-Ja;Park, Jae-Ok
    • Journal of Nutrition and Health
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 1977
  • Flow properties of heated edible oils, such as soybean, rapeseed, rice bran, corn and perilla oils, were measured with Maron-Belner type capillary viscometer. These oils were heated at $180{\pm}5^{\circ}C$ (general cooking temperature) for $5{\sim}20$ hours except soybean oils ($5{\sim}40$ hours). Fluidities of these heated oils except rice bran oil were decreased according to heating time and decreasing ratio of fluidity was outstanding after 15 hour heating in corn oil and 20 hours heating in soybean and perilla oils. All the oils examined in this experiments except rice bran oil showed non-Newtonian motion after 15 hour hinting at high shear stress and Newtonian motion at less than 10 hour heating. In the soybean oil non-Newtonian flow property was outstanding after 30 hour heating at $180{\pm}5^{\circ}C$. Rice bran oil exhibit characteristic flow property, that is, non heated rice bran oil has lowest fluidity but heated one has highest fluidity compared to other oils examined in this experiment. Change of fluidity with extension of heating time was not detected and non heated rice bran oil showed non-Newtonian motion.

  • PDF

A Study on the Mutagenicity of Thermally Oxidized Safflower Oil (가열산화 홍화유의 돌연변이원성에 관한 연구)

  • 안명수;이진영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.120-127
    • /
    • 2000
  • Deep-fat frying is a common cooking practice. There has been considerable concern regarding the mutagenic and carcinogenic potential of thermally oxidized oils. Studies on deep-fried foods so far have revealed not much on the mutagenicity of the oils in the foods. Therefore, in the present study, it was attempted to investigate the mutagenicity ofthe thermally oxidized safflower oil. Oil was heated in a home-fryer at a temperature of 180$\pm$3$^{\circ}C$ for 48 hours. Oil samples were taken at 0, 8, 16, 24, 32, 40 and 48 hours of heating, respectively. Each sample was used to study the changes in peroxide value (POV), acid value (AV), iodine value (IV), conjugated dienoic acid (CDA) content, %, and fatty acid composition. Another series of samples were fractionated into non-polar and polar fractions by column chromatography. The mutagenicity of the samples taken from the thermally oxidized oils, as well as the non-polar and polar fractions of the thermally oxidized oils, was investigated with the Ames test. The Ames test was carried out with and without metabolic activation. Bacterial tester strains used in the present study were the histidine auxotrophic strains of Salmonella typhimurium TA100, TA1535 and TA102 were used for the detection of base pair mutations, and TA98 and TA1537 for frame shift mutations. Each series of samples was dissolved in tetraphydrofuran (inhibitor-free) and tested at doses ranging from 0.05 to 5 mg/plate. None of the oil samples taken during the 48 hour oxidation period showed any mugagenic activity. This was the case, even after the activaton with 59 mix. Also, none of the polar and non-polar fractions showed any mutagenic activity on all the strains tested.

  • PDF

Control of Powdery and Downy Mildews of Cucumber by Using Cooking Oils and Yolk Mixture

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Park, Jong-Ho;Lee, Byung-Mo;Choi, Du-Hoe;Ryu, Gab-Hee
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.280-285
    • /
    • 2009
  • Powdery and downy mildews caused by Sphaerotheca fusca and Pseudoperonospora cubensis are the most common and serious diseases of cucumber worldwide. In spite of the introduction of highly effective systemic fungicides, control of these diseases remains elusive. Hence, this study aimed to develop an alternative method to chemicals in controlling the diseases by using different types of cooking oil. Egg yolk, which contains a natural emulsifier, lecithin, was selected as a surfactant to emulsify the oils. Among the different cooking oils used, soybean, canola (rape seed), safflower, sunflower, olive, and corn oils showed over 95% control values against powdery mildew of cucumber in a greenhouse test. In particular, 0.3% canola oil emulsified with 0.08% yolk (1 yolk and 60 ml canola in 20 l spray) was found to be the most effective. The treatment resulted in 98.9% and 96.3% control efficacies on powdery and downy mildews, respectively, of cucumber in the field. Canola oil exhibited direct and systemic effect, wherein powdery mildew of cucumber was suppressed only on treated leaves but not on non-treated leaves in a plant, while mycelia and conidia of the pathogen were severely distorted or destroyed by the treatment. The prospect of using the canola oil and yolk mixture as a natural fungicide is highly promising because of its effectiveness, availability, low cost, simple preparation, and safety to humans and the environment. The use of the canola oil and yolk mixture is expected to be an effective fungicide for use in organic farming and home gardening.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

A study on the noodle quality made from pea starch-wheat composite flour (완두 전분을 첨가한 국수의 품질특성)

  • 김은주;윤재영;김희섭
    • Korean journal of food and cookery science
    • /
    • v.18 no.6
    • /
    • pp.692-697
    • /
    • 2002
  • The purpose of this study is to investigate the characteristics of the doughs and noodles cooked with the pea starch-wheat composite flour which was substituted with 20% and 30% of pea starch for the flour by the mechanical and sensory evaluation. Wheat dough had the most cohesive property among various composite non.(p<0.05) There was no significant differences in weight gain after cooking among various noodles. The more the pea starch was subsituted, the lighter the color was shown by increasing L value. It was also noted that the b value was decreased significantly. While pea starch noodle were more transparent in appearance and less smooth in the texture, corn starch-wheat composite flour noodle was sorter in the texture significantly. There was no significant difference on the hardness between wheat and pea stach composite flour noodles. There were also no significant differences in stickiness, chewiness and overall acceptability among various noodles. Considering mechanical and sensory results, the composite flour with 20% substitution of pea starch for flour was more suitable for the production of the noodle than those of 30% substitution of pea starch.