• Title/Summary/Keyword: non-normality

Search Result 105, Processing Time 0.031 seconds

Effects of Non-normality on the Performance of Univariate and Multivariate CUSUM Control Charts (비정규 모집단에 대한 일변량 및 다변량 누적합 관리도의 성능 분석)

  • Chang, Young-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.102-109
    • /
    • 2006
  • This paper investigates the effects of non-normality on the performance of univariate and multivariate cumulative sum(CUSUM) control charts for monitoring the process mean. In-control and out-of-control average run lengths of the charts are examined for the univariate/multivariate lognormal and t distributions. The effects of the reference value and the correlation coefficient under the non-normal distributions are also studied. Simulation results show that the CUSUM charts with small reference values are robust to non-normality but those with moderate or large reference values are sensitive to non-normal data especially to process data from skewed distributions. The performance of the chart to detect mean shift of a process is not invariant to the direction of the shift for skewed distributions.

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li;Li, Qlan-Ru
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.525-539
    • /
    • 2007
  • Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.

Goodness-of-Fit Test for the Normality based on the Generalized Lorenz Curve

  • Cho, Youngseuk;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • Testing normality is very important because the most common assumption is normality in statistical analysis. We propose a new plot and test statistic to goodness-of-fit test for normality based on the generalized Lorenz curve. We compare the new plot with the Q-Q plot. We also compare the new test statistic with the Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM), Anderson-Darling (AD), Shapiro-Francia (SF), and Shapiro-Wilks (W) test statistic in terms of the power of the test through by Monte Carlo method. As a result, new plot is clearly classified normality and non-normality than Q-Q plot; in addition, the new test statistic is more powerful than the other test statistics for asymmetrical distribution. We check the proposed test statistic and plot using Hodgkin's disease data.

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1191-1200
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.203-212
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

Robustness of Predictive Density and Optimal Treatment Allocation to Non-Normal Prior for The Mean

  • Bansal, Ashok K.;Sinha, Pankaj
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 1993
  • The predictive density function of a potential future observation and its first four moments are obtained in this paper to study the effects of a non-normal prior of the unknown mean of a normal population. The derived predictive density function is modified to study changes in utility curves, used to choose the optimum treatment from a given set of treatments, at a given level of stimulus due to slight deviations from normality of the prior distribution. Numerical illustrations are provided to exhibit some effectsl.

  • PDF

Design of the Well-Conditioned Observer Using the Non-Normality Measure (비정규지표를 이용한 Well-Conditioned 관측기 설계)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1114-1119
    • /
    • 2002
  • In this paper, the well-conditioned observer is designed to be insensitive to the ill-conditioning factors in transient and steady-state observer performance. A condition number based on 12-norm of the eigenvector matrix of the observer matrix has been proposed on a principal index in the observer performance. For the well-conditioned observer design, the non-normality measure and the observability condition of the observer matrix are utilized. The two constraints are specified into observer gain boundary region that guarantees a small condition number and a stable observer. The observer gain selected in this region guarantees a well-conditioned and observable property. In this study, this method is applied to the Luenberger observer and Kalman filters for small order systems. In designing Kalman filters, the ratio of the process noise covariance to the measurement noise covariance is a design parameter and its effect on the condition number is investigated.

Design of the Well-Conditioned Observer Using the Non-normality Measure (비정규지표를 이용한 Well-Conditioned 관측기 설계)

  • 정종철;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.313-318
    • /
    • 2001
  • In this paper, the well-conditioned observer is designed to be insensitive to the ill-conditioning factors in transient and steady-state observer performance. A condition number based on $L_2-norm$ of the eigenvector matrix of the observer matrix has been proposed on a principal index in the observer performance. For the well-conditioned observer design, the non-normality measure and the observability condition of the observer matrix are utilized. The two constraints are specified into observer gain boundary region that guarantees a small condition number and a stable observer. The observer gain selected in this region guarantees a well-conditioned and observable property. In this study, this method is applied to the Luenberger observer and Kalman filters. In designing Kalman filters for small order systems, the ratio of the process noise covariance to the measurement noise covariance is a design parameter and its effect on the condition number is investigated.

  • PDF

Quantile-based Nonparametric Test for Comparing Two Diagnostic Tests

  • Kim, Young-Min;Song, Hae-Hiang
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.609-621
    • /
    • 2007
  • Diagnostic test results, which are approximately normal with a few number of outliers, but non-normal probability distribution, are frequently observed in practice. In the evaluation of two diagnostic tests, Greenhouse and Mantel (1950) proposed a parametric test under the assumption of normality but this test is inappropriate for the above non-normal case. In this paper, we propose a computationally simple nonparametric test that is based on quantile estimators of mean and standard deviation, instead of the moment-based mean and standard deviation as in some parametric tests. Parametric and nonparametric tests are compared with simulations under the assumption of, respectively, normality and non-normality, and under various combinations of the probability distributions for the normal and diseased groups.

A Note on the Robustness of the X Chart to Non-Normality

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.685-696
    • /
    • 2012
  • These days the interest of quality leads to the necessity of control charts for monitoring the process in various fields of practical applications. The $\overline{X}$ chart is one of the most widely used tools for quality control that also performs well under the normality of quality characteristics. However, quality characteristics tend to have nonnormal properties in real applications. Numerous recent studies have tried to find and explore the performance of $\overline{X}$ chart due to non-normality; however previous studies numerically examined the effects of non-normality and did not provide any theoretical justification. Moreover, numerical studies are restricted to specific type of distributions such as Burr or gamma distribution that are known to be flexible but can hardly replace other general distributions. In this paper, we approximate the false alarm rate(FAR) of the $\overline{X}$ chart using the Edgeworth expansion up to 1/n-order with the fourth cumulant. This allows us to examine the theoretical effects of nonnormality, as measured by the skewness and kurtosis, on $\overline{X}$ chart. In addition, we investigate the effect of skewness and kurtosis on $\overline{X}$ chart in numerical studies. We use a skewed-normal distribution with a skew parameter to comprehensively investigate the effect of skewness.