• Title/Summary/Keyword: non-symmetry

Search Result 162, Processing Time 0.03 seconds

Comparison of the condyle-fossa relationship between skeletal class III malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study

  • Kim, Hyoun Oak;Lee, Won;Kook, Yoon-Ah;Kim, Yoonji
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • Objective: This study investigated whether temporomandibular joint (TMJ) condyle-fossa relationships are bilaterally symmetric in class III malocclusion patients with and without asymmetry and compared to those with normal occlusion. The hypothesis was a difference in condyle-fossa relationships exists in asymmetric patients. Methods: Group 1 comprised 40 Korean normal occlusion subjects. Groups 2 and 3 comprised patients diagnosed with skeletal class III malocclusion, who were grouped according to the presence of mandibular asymmetry: Group 2 included symmetric mandibles, while group 3 included asymmetric mandibles. Pretreatment three-dimensional cone-beam computed tomography (3D CBCT) images were obtained. Right- and left-sided TMJ spaces in groups 1 and 2 or deviated and non-deviated sides in group 3 were evaluated, and the axial condylar angle was compared. Results: The TMJ spaces demonstrated no significant bilateral differences in any group. Only group 3 had slightly narrower superior spaces (p < 0.001). The axial condylar angles between group 1 and 2 were not significant. However, group 3 showed a statistically significant bilateral difference (p < 0.001); toward the deviated side, the axial condylar angle was steeper. Conclusions: Even in the asymmetric group, the TMJ spaces were similar between deviated and non-deviated sides, indicating a bilateral condyle-fossa relationship in patients with asymmetry that may be as symmetrical as that in patients with symmetry. However, the axial condylar angle had bilateral differences only in asymmetric groups. The mean TMJ space value and the bilateral difference may be used for evaluating condyle-fossa relationships with CBCT.

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Charge Neutral Quasi-Free-Standing Graphene on 6H-SiC(0001) Surface by Pd Silicidation and Intercalation

  • Song, In-Gyeong;Sin, Ha-Cheol;Park, Jong-Yun;An, Jong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.128-128
    • /
    • 2012
  • We investigated the atomic and electronic properties of graphene grown by Pd silicidation and intercalation using LEED, STM, and ARPES. Pd was deposited on the 6H-SiC(0001) surface at RT. The formation of Pd silicide gives rise to breaking of Si-C bonds of the SiC crystal, which enables to release C atoms at low temperature. The C atoms are transformed into graphene from $860^{\circ}C$ according to the LEED patterns as a function of annealing temperature. Even though the graphene spots were observed in the LEED pattern and the Fourier transformed STM images after annealing at $870^{\circ}C$, the topography images showed various superstructures so that graphene is covered with Pd silicide residue. After annealing at $950^{\circ}C$, monolayer graphene was revealed at the surface. The growth of graphene is not limited by surface obstacles such as steps and defects. In addition, we observed that six protrusions consisting of the honeycomb network of graphene has same intensity meaning non-broken AB-symmetry of graphene. The ARPES results in the vicinity of K point showed the non-doped linear ${\pi}$ band structure indicating monolayer graphene decoupled from the SiC substrate electronically. Note that the charge neutrality of graphene grown by Pd silicidation and intercalation was sustained regardless of annealing temperature in contrast with quasi-free- standing graphene induced by H and Au intercalation. Further annealing above $1,000^{\circ}C$ accelerates sublimation of the Pd silicide layer underneath graphene. This results in appearance of the $(6r3x6r3)R30^{\circ}$ structure and dissolution of the ${\pi}$ bands for quasi-free-standing graphene.

  • PDF

Effects of Unilateral Step Treadmill Training on the Gait Speed and Recovery of Gait Symmetry in Patients with Chronic Stroke (편측성 걸음걸이 트레드밀 훈련이 만성 뇌졸중 환자의 보행 속도와 대칭성 회복에 미치는 효과)

  • Lee, Ji-Yeon;Chon, Seung-Chul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 2022
  • Purpose : Stroke patients exhibit abnormal walking patterns such as slow walking speed and asymmetrical walking values. The recovery of symmetrical walking in the stance phase using a treadmill means improvements in walking speed and asymmetrical walking. The purpose of this research was to investigate the effect of unilateral step treadmill training (USTT) on gait speed and the recovery of symmetrical walking in chronic stroke patients. Methods : Fifteen patients (11 men and 4 women) with chronic stroke participated in this study. The 10-meter walk test (10MWT) and GAITRite system were used to determine the intervention-related changes in gait speed and symmetrical walking values such as non-paretic step length (NSL), non-paretic step time (NST), paretic single-support time (PSST), step length asymmetry (SLA), and step time asymmetry (STA) after USTT. All participants completed USTT and underwent measurements at 3 different times: at pretest, posttest, and the follow-up test. Repeated-measures analysis of variance was used to compare walking speed and asymmetrical walking values. The statistical significance level was set at p<.05. Results : Walking speed by 10MWT (p<.05) showed significant improvements after USTT as follows: at pretest and posttest (p<.05), posttest and follow-up test (p<.05), and pretest and follow-up test (p<.05). Recovery of symmetrical walking patterns such as NSL (p<.05), NST (p<.05), and SLA (p<.05) were observed after USTT. However, no significant improvements were found in PSST (p>.05) and STA (p>.05) in symmetrical gait. Conclusion : This study suggests that USTT may have a positive effect on walking speed and symmetrical walking patterns in chronic stroke patients. Thus, this study contributes to the existing knowledge about the usefulness of USTT for the effective management of patients with chronic stroke. Further studies are needed to generalize these findings.

Evaluation of Therapeutic Efficacy using [18F]FP-CIT in 6-OHDA-induced Parkinson's Animal Model

  • Jang Woo Park;Yi Seul Choi;Dong Hyun Kim;Eun Sang Lee;Chan Woo Park;Hye Kyung Chung;Ran Ji Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2023
  • Parkinson's disease is a neurodegenerative disease caused by damage to brain neurons related to dopamine. Non-clinical animal models mainly used in Parkinson's disease research include drug-induced models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, and genetically modified transgenic animal models. Parkinson's diagnosis can be made using brain imaging of the substantia nigra-striatal dopamine system and using a radiotracer that specifically binds to the dopamine transporter. In this study, 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane was used to confirm the image evaluation cutoff between normal and parkinson's disease models, and to confirm model persistence over time. In addition, the efficacy of single or combined administration of clinically used therapeutic drugs in parkinson's animal models was evaluated. Image analysis was performed using the PMOD software. Converted to standardized uptake value, and analyzed by standardized uptake value ratio by dividing the average value of left striatum by the average value of right striatum obtained by applying positron emission tomography images to the atlas magnetic resonance template. The image cutoff of the normal and the parkinson's disease model was calculated as SUVR=0.829, and it was confirmed that it was maintained during the test period. In the three-drug combination administration group, the right and left striatum showed a high symmetry of more than 0.942 on average and recovered significantly. Images using 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane are thought to be able to diagnose and evaluate treatment efficacy of non-clinical Parkinson's disease.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

A Pipelined Parallel Optimized Design for Convolution-based Non-Cascaded Architecture of JPEG2000 DWT (JPEG2000 이산웨이블릿변환의 컨볼루션기반 non-cascaded 아키텍처를 위한 pipelined parallel 최적화 설계)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.29-38
    • /
    • 2009
  • In this paper, a high performance pipelined computing design of parallel multiplier-temporal buffer-parallel accumulator is present for the convolution-based non-cascaded architecture aiming at the real time Discrete Wavelet Transform(DWT) processing. The convolved multiplication of DWT would be reduced upto 1/4 by utilizing the filter coefficients symmetry and the up/down sampling; and it could be dealt with 3-5 times faster computation by LUT-based DA multiplication of multiple filter coefficients parallelized for product terms with an image data. Further, the reutilization of computed product terms could be achieved by storing in the temporal buffer, which yields the saving of computation as well as dynamic power by 50%. The convolved product terms of image data and filter coefficients are realigned and stored in the temporal buffer for the accumulated addition. Then, the buffer management of parallel aligned storage is carried out for the high speed sequential retrieval of parallel accumulations. The convolved computation is pipelined with parallel multiplier-temporal buffer-parallel accumulation in which the parallelization of temporal buffer and accumulator is optimize, with respect to the performance of parallel DA multiplier, to improve the pipelining performance. The proposed architecture is back-end designed with 0.18um library, which verifies the 30fps throughput of SVGA(800$\times$600) images at 90MHz.

The Crystal and Molecular Structure of Dipropargyldiphenylmethane (디프로파질디페닐메탄의 결정 및 분자구조)

  • Ahn Choong Tai;Choi Sam-Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.473-476
    • /
    • 1993
  • Dipropargyldiphenylmetane, $C_{19}H_{16}, crystallizes in a monoclinic space group $C2/_c$$ with a = 11304(3), b = 20.799(5), c = 6.622(2)${\AA}$, ${\beta} = 112.8(3)^{\circ}$, Z = 4, V = 1435.3${\AA}^3,\;F(000)\;=\;520,\;D_c\;=\;1.14g{\cdot}cm^{-3}$ and ${\mu}\;=\;0.32\;cm^{-1}$. The structure was solved by direct methods and all non-H atoms were identified in the E-map. The final refinement gave R = 0.055 from 1328 unique observed reflections with I $\geq$ -1.0 $\sigma(I).$ The molecule belongs to the point group $C_2$ of Symmetry by possessing the 2-fold axis which coincides witeh the crystallographic symmetry axis in the unit cell. The linear propargyl moiety is nearly $perpendicular(94.2)^{\circ}$ to the molecular plane of the benzene ring. The internal angle of methane carbon atoms in $108.1(1)^{\circ}$, bonding to the benzene and the propargyl moiety with the bond lengths of 1.530(2) and $1.560(2)\AA$, respectively. The shortest contant between the molecules is $3.538(2)\AA$ between C(9) and C(9) (-x, y, -1/2-z).

  • PDF

PERCEPTION ASSESSMENT OF ESTHETICS OF UPPER ANTERIOR TEETH (상악전치부 심미에 대한 인식도 평가)

  • Jung Jae-Hoon;Oh Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.640-655
    • /
    • 2003
  • Statement of problem : The beauty has a little different meaning according to a time, culture, and nation. Purpose : This study was undertaken to determine the Korean perception of the altered upper anterior dental esthetics including the lack of symmetry, the midline deviation, the gingival exposure, the inclination of incisal plane, the type of incisal plane, and the type of gingival line. Material and Method : 670 subjects were participated in this survey. A questionnaire accompanied by 12 sets of computer-manipulated images using 3D MAX 4.2 software was used to record the ranking of the geometric preference related to the anterior esthetic discrepancies in three or four degrees of alteration. The statistical significance of the differences between the groups was determined by a one-way ANOVA and a t-test. Results : The results obtained were as follows: 1) The Korean perception of the anterior dental esthetics according to the subjects' occupation, sex, and age was most affected by occupation. 2) The masked image emphasizing the dentition and lips appeared stranger than the non-masked image at the same alteration. 3) The lack of symmetry, which was expressed as a unilateral discoloration of the tooth, showed incongruity in any teeth of the anterior dentition. The incongruity was more severe as the degree occurred closer to the midline. 4) The deviation of midline was showed more severe strangeness as the degree of deviation increased. However, more than half of the subjects did not perceive a deviation of 5mm. 5) During smiling, the exposure of the upper gingiva showed more severe incongruity as the degree of gingival exposure increased. 77% of the subjects perceived strangeness at the gingival exposure of 4.5mm. 6) The inclination of the incisal plane appeared stranger as the degree of inclination increased. 62% of subjects perceived strangeness at the $7.5^{\circ}$ inclination of the incisal plane. 7) The type of incisal plane showed increasing strangeness in the order of convex/downward, straight/horizontal, and concave/upward. 80% of subjects perceived strangeness at concave/upward. 8) The type of gingival line was showed increasing incongruity in the order of the same, a little above, and a little under the zenith of the lateral incisor to the line joining the zenith of the central incisor and the canine. However, less than half the subjects did not perceive strangeness at any alteration of the gingival line. Conclusion : The Korean perception of the upper anterior dental esthetics was different to the westerner's perception in the some respects.

Investigation of Electronic Structures of TCr2O4 (T = Fe, Co, Ni) Spinel Oxides by Employing Soft X ray Synchrotron Radiation Spectroscopy (연 X선 방사광 분광법을 이용한 TCr2O4(T = Fe, Co, Ni) 스피넬 산화물의 전자구조 연구)

  • Kim, Hyun Woo;Hwang, Jihoon;Kim, D.H.;Lee, Eunsook;Kang, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.149-153
    • /
    • 2013
  • The electronic structures of $TCr_2O_4$ (T = Fe, Co, Ni) spinel oxides have been investigated by employing synchrotron radiation-based soft X ray absorption spectroscopy (XAS). The measured 2p XAS spectra of transition-metal ions reveal that Cr ions are trivalent ($Cr^{3+}$), and all the T (T = Fe, Co, Ni) ions are divalent ($Fe^{2+}$, $Co^{2+}$, $Ni^{2+}$). It is also found that most of T (T = Fe, Co, Ni) ions occupy the A sites under the tetrahedral symmetry, while Cr ions occupy mainly the B sites under the octahedral symmetry. These findings show that the structures of $TCr_2O_4$ (T = Fe, Co, Ni) are very close to the normal spinel structures. Based on these findings, it is expected that Jahn-Teller (JT) effects are important in $FeCr_2O_4$ and $NiCr_2O_4$. In contrast, $CoCr_2O_4$ maintains the cubic structure without having the JT distortion since both $Cr^{3+}$ and $Co^{2+}$ ions are non-JT ions. This work suggests that the antiferromagnetic interaction between $Cr^{3+}$ and $T^{2+}$ ions plays an important role in determining the magnetic properties of $TCr_2O_4$ (T = Fe, Co, Ni).