• Title/Summary/Keyword: nonlinear difference equation

Search Result 174, Processing Time 0.029 seconds

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

OSCILLATION OF SECOND ORDER NONLINEAR DELAY DIFFERENCE EQUATIONS

  • Saker, S.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.489-501
    • /
    • 2003
  • In this paper we shall consider the nonlinear delay difference equation $\Delta({p_n}{\Deltax_N})\;+\;q_nf(x_{n-\sigma})\;=\;0,\;n\;=\;0,\;1,\;2,\;...$ when (equation omitted). We will establish some sufficient conditions which guarantee that every solution is oscillatory or converges to zero.

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

A CONSERVATIVE NONLINEAR DIFFERENCE SCHEME FOR THE VISCOUS CAHN-HILLIARD EQUATION

  • Choo, S.M.;Chung, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.53-68
    • /
    • 2004
  • Numerical solutions for the viscous Cahn-Hilliard equation are considered using the Crank-Nicolson type finite difference method which conserves the mass. The corresponding stability and error analysis of the scheme are shown. The decay speeds of the solution in $H^1-norm$ are shown. We also compare the evolution of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation numerically and computationally, which has been given as an open question in Novick-Cohen[13].

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED NONLINEAR CALCIUM DIFFUSION EQUATION

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1247-1256
    • /
    • 2009
  • Finite difference schemes are considered for a nonlinear $Ca^{2+}$ diffusion equations with stationary and mobile buffers. The scheme inherits mass conservation as for the classical solution. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained. using the extended Lax-Richtmyer equivalence theorem.

  • PDF

OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DIFFERENCE EQUATIONS WITH 'SUMMATION SMALL' COEFFICIENT

  • KANG, GUOLIAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.245-256
    • /
    • 2005
  • We consider the second-order nonlinear difference equation (1) $$\Delta(a_nh(x_{n+1}){\Delta}x_n)+p_{n+1}f(x_{n+1})=0,\;n{\geq}n_0$$ where ${a_n},\;{p_n}$ are sequences of integers with $a_n\;>\;0,\;\{P_n\}$ is a real sequence without any restriction on its sign. hand fare real-valued functions. We obtain some necessary conditions for (1) existing nonoscillatory solutions and sufficient conditions for (1) being oscillatory.

Positive Solutions for Three-point Boundary Value Problem of Nonlinear Fractional q-difference Equation

  • Yang, Wengui
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.419-430
    • /
    • 2016
  • In this paper, we investigate the existence and uniqueness of positive solutions for three-point boundary value problem of nonlinear fractional q-difference equation. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, two examples are presented to illustrate the main results.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

CLASSIFICATION AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • ZHOU YONG;LI C. F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.127-144
    • /
    • 2005
  • In this paper, we consider the higher order nonlinear neutral delay difference equation of the form $\Delta^{\gamma}(x_{n}+px_{n-\gamma})+f(n, x_{n-\sigma_1(n)}, x_{n-\sigma_2(n)}, \ldots, x_{n-\sigma{_m}(n)})=0$. We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.