• Title/Summary/Keyword: nonlinear temperature profile

Search Result 21, Processing Time 0.025 seconds

A Study on the Stack Temperature Profile of a Standing Wave Thermoacoustic Cooler (정재파 열음향 냉각기의 스택 온도구배에 대한 연구)

  • Paek, In-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Investigations of the relation between the stack temperature profile of a standing wave thermoacoustic cooler and the cooling efficiency were performed. Based on the mathematical derivations using the Rott Equation, it was found that the temperature profile along the stack becomes nonlinear as the enthalpy flux passing through the stack increases. It was also found that such nonlinear temperature profiles lower the cooling efficiency. Simulations using a thermoacoustic simulation program called DELTAE showed that the nonlinear temperature profile occurs with a long stack and large cooling load.

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

  • Bhatti, M.M.;Abbas, T.;Rashidi, M.M.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.468-475
    • /
    • 2016
  • In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.

Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad N.;Al Naim, Abdullah F.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • In present study, the numerical investigations are carried out for effects of suction and blowing on boundary layer slip flow of casson nano fluid along permeable stretching cylinder in an exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Change in physical quantities like friction coefficient, Nusselt and Sherwood numbers with variation of the aforementioned parameters are also examined and their numerical values are listed in the form of tables. Effects of Reynold number, suction parameter, Prandtl number, Lewis number, Brownian motion parameter and thermophoresis parameter are seen graphically with temperature profile.

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Temperature Rise due to Nonlinear Propagation of Ultrasound using Weak Shock Theory (Weak Shock Theory를 이용한 초음파의 비선형 전파에 의한 온도 상승)

  • Choi, M.J.;Sung, K.M.;Lee, S.E.;Chung, B.H.;Lee, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.74-75
    • /
    • 1998
  • The present study employs weak shock theory and bio-heat transfer function to predict the temperature rise due to nonlinear propagation of high amplitude ultrasound. The theory shows that, for the focused ultrasound which is assumed to have an gaussian beam profile and has the focal intensity of $1000W/cm^2$, the temperature rise of liver tissue exposed for 1 second to the energy lost during nonlinear propagation goes up to about $30^{\circ}C$. This indicate that it is necessary to consider the nonlinear propagation induced heating enhancement when setting exposure condition of high intensity focused ultrasound used for cancer thermotherapy.

  • PDF

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

Combined influence of slip parameter and Reynolds number on Casson nanofluid flowing in stretching cylinder

  • Jalil, Mudassar;Hussain, Muzamal;Khadimallah, Mohamed A.;Iqbal, Waheed;Loukil, Hassen;Mouldi, Abir;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.369-375
    • /
    • 2022
  • Current exertion reports the numerical analysis of boundary layer slip flow of Casson Nano fluid along a permeable cylinder that is stretching in exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Numerical results are attained using a renowned numerical scheme shooting method with Runge-Kutta procedure of 6th-order. Influential role of relevant parameters like Reynolds, suction, Casson fluid and slip parameters on velocity profile is investigated. The effect of influence of slip parameter γ on temperature profile is seen through graph. To ensure the authenticity of numerical procedure, outcomes of some special cases of present work are compared with published work and strong agreement is noticed.

Optimization of inlet velocity profile for uniform epitaxial growth (균일한 에피층 성장을 위한 입구 유속분포 최적화)

  • Cho W. K.;Choi D. H.;Kim M.-U.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.121-126
    • /
    • 1998
  • A numerical optimization procedure is developed to find the inlet velocity profile that yields the most uniform epitaxial layer in a vertical MOCVD reactor. It involves the solution of fully elliptic equations of motion, temperature, and concentration; the finite volume method based on SIMPLE algorithm has been adopted to solve the Navier-Stokes equations. The overall optimization process is highly nonlinear and has been efficiently treated by the sequential linear programming technique that breaks the non-linear problem into a series of linear ones. The optimal profile approximated by a 6th-degree Chebyshev polynomial is very successful in reducing the spatial non-uniformity of the growth rate. The optimization is particularly effective to the high Reynolds number flow. It is also found that a properly constructed inlet velocity profile can suppress the buoyancy driven secondary flow and improve the growth-rate uniformity.

  • PDF

Thermophoresis in Dense Gases: a Study by Born-Green- Yvon Equation

  • Han Minsub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1027-1035
    • /
    • 2005
  • Thermophoresis in dense gases is studied by using a multi-scale approach and Born- Yvon­Green (BYG) equation. The problem of a particle movement in an ambient dense gas under temperature gradient is divided into inter and outer ones. The pressure gradient in the inner region is obtained from the solutions of BYG equation. The velocity profile is derived from the conservation equations and calculated using the pressure gradient, which provides the particle velocity in the outer problem. It is shown that the temperature gradient applied to the quiescent ambient gas induces some pressure gradient and thus flow tangential to the particle surface in the interfacial region. The mechanism that induces the flow may be the dominant source of the thermophretic particle movement in dense gases. It is also shown that the particle velocity has a nonlinear relationship with the applied temperature gradient and decreases with increasing temperature.