• Title/Summary/Keyword: nutrition to cells

Search Result 2,455, Processing Time 0.034 seconds

Protective Effects of Chungkookjang Extract on High Glucose Induced Oxidative Stress in LLC-PK1 Cells

  • Yi, Na-Ri;Seo, Kyoung-Chun;Choi, Ji-Myung;Cho, Eun-Ju;Song, Young-Ok;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.84-89
    • /
    • 2008
  • This study was designed to investigate the protective effect of a methanol extract of Chungkookjang (CKJ) on high glucose induced oxidative stress in LLC-$PK_1$ cells (renal tubular epithelial cells), which are susceptible to oxidative stress. Freeze dried CKJ powder was extracted with methanol, and the extract solution was concentrated, and then used in this study. To determine the protective effect of CKJ extract, oxidative stress was induced by exposing of LLC-$PK_1$ cells to high glucose (30 mM) or normal glucose (5 mM) for 24 hr. Exposure of LLC-$PK_1$ cells to high glucose for 24 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5 mM glucose. CKJ extract treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated LLC-$PK_1$ cells. These results suggest that CKJ extract may be able to protect LLC-$PK_1$ cells from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Inhibitory Effect of Kale Juice on the Growth and DNA Incorporation of Human Cancer Cells

  • Lee, Seon-Mi;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.167-173
    • /
    • 1997
  • The inhibitory effects of kale juice on the growh and DNA incorporation of human cancer cells, using HT-29 colon cancer cells, MG-63 osteosarcoma cells, AGS gastric adenocarcinoma cells and K-562 leukemia cells, were studied. The growth of human cancer cells were inhibited in the presence of kale juice (10, 20 nd 40$\mu$l/ml) and the effects were the juice concentration- and incubation time-dependent up to 6 days. When 20$\mu$l/ml of kale juice was added to the media of HT-29, MG-63, AGS and K-562 cancer cells, the cell growth after 6 or 4 days of incubation was retarded by 83~95% of control group. Morphological changes of HT-29 colon cancer cells wre studied under inverted microscope. As the concentration of kale juice increased up to 20$\mu$l/ml, degree of cell aggregation was decreased. Moreover, the DNA incorporation o AGS gastric adenocarcinoma cells and MG-63 osteosarcoma cells which were labeled with [$^3$H] thymidine was significantly reduced after 2 days of incubation at 37$^{\circ}C$ with kale juice. Therefore, we concluded that kale juice strongly decreased the growth of various human cancer cells.

  • PDF

Analysis of the Cytotoxicity of Green Pigment Produced on the Surface of Roasted and Retorted Chestnuts Using Immune Cells and Gastrointestinal Cancer Cells

  • Jung, Ha-Na;Jeong, Ji-Hyun;Cheon, Hee-Soon;Choi, Jun-Bong;Cho, Hyunn-Ho;Jhin, Chang-Ho;Hwang, Keum-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.230-235
    • /
    • 2011
  • Roasted and retorted (RR) chestnuts develop green pigment spots on their surface during storage. The purpose of this study was to evaluate the cytotoxicity of the green pigment using RAW 264.7, MOLT-4, KATOIII and HT-29 cells. The pigment scraped from RR chestnuts (GP), whole RR chestnuts with green pigment spots (GC), whole RR chestnuts without green pigment (WC) and roasted and frozen stored chestnuts (FC) were extracted in 10% DMSO. MOLT-4 cells were less resistant to the cytotoxicity of the chestnut extracts than the RAW 264.7 cells. The GP extracts did not show different responses against $H_2O_2$-induced oxidative stress and LPS-induced NO production compared to the other extracts. The chestnut extracts did not have proliferative activity on either of the KATOIII or HT-29 cells (p>0.05). Our results from the comparison of the green pigment produced on the surface of the RR chestnuts to chestnuts that do not develop the green pigment suggest that the pigment may not be harmful in terms of either cytotoxicity towards immune cells or proliferation of gastrointestinal cancer cells.

The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma

  • Kim, Yu-Ri
    • Nutrition Research and Practice
    • /
    • v.4 no.6
    • /
    • pp.455-461
    • /
    • 2010
  • The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1 % $O_2$) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation.

Effect of Curcumin on Cancer Invasion and Matrix Metalloproteinase-9 Activity in MDA-MB-231 Human Breast Cancer Cell (Curcumin이 인체 유방암세포 MDA-MB-231 Cell의 전이 과정과 Matrix Metalloproteinase-9 활성에 미치는 영향)

  • Bang, Myung-Hee;Kim, Woo-Kyoung
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.756-761
    • /
    • 2006
  • Curcumin has been known for its anti-proliferative and apoptotic effects on several cancer cells. We examined the inhibitory effects of curcumin on cancer cell adhesion, motility, invasion and matrix metalloproteinase-9 (MMP-9) activity in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured with 0, 5, 10 or $20{\mu}M$ of curcumin. Curcumin significantly inhibited the adhesion of cancer cells to the fibronectin at $20{\mu}M$ and suppressed the motility and invasion of cancer cells at all concentrations. Also, the MMP-9 activity was inhibited by curcumin, but MMP-9 protein amounts were not affected. Our data indicate that curcumin inhibits motility, invasion and MMP-9 activity of MDA-MB-231 cells. Therefore, curcumin may contribute to the potential beneficial food component to prevent the cancer metastasis in human breast cancer.

Inorganic sulfur reduces the motility and invasion of MDA-MB-231 human breast cancer cells

  • Kim, Jin-Joo;Ha, Hwa-Ae;Kim, Hee-Sun;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.5 no.5
    • /
    • pp.375-380
    • /
    • 2011
  • This study investigated the effects of inorganic sulfur on metastasis in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured in the absence or presence of various concentrations (12.5, 25, or 50 ${\mu}mol$/L) of inorganic sulfur. Cell motility, invasion, and the activity and mRNA expression of matrix metalloproteases (MMPs) were examined. Numbers of viable MDA-MB-231 cells did not differ by inorganic sulfur treatment from 0 to 50 ${\mu}mol$/L within 48 h. Inorganic sulfur significantly decreased cell motility and invasion in the MDA-MB-231 cells in a dose-dependent manner (P<0.05), as determined using a Boyden chamber assay and a Matrigel chamber. The activities of MMP-2 and MMP-9 were significantly reduced by inorganic sulfur in a dose-dependent manner (P<0.05). The inorganic sulfur also significantly inhibited MMP-2 and MMP-9 expression in the cells (P<0.05). These data suggest that inorganic sulfur can suppress cancer cell motility and invasion by inhibiting MMP-2 and MMP-9 activity and gene expression in MDA-MB-231 cells.

Effect of Gene actA on the Invasion Efficiency of Listeria monocytogenes, as Observed in Healthy and Senescent Intestinal Epithelial Cells

  • Ha, Jimyeong;Oh, Hyemin;Kim, Sejeong;Lee, Jeeyeon;Lee, Soomin;Lee, Heeyoung;Choi, Yukyung;Moon, Sung Sil;Choi, Kyoung-Hee;Yoon, Yohan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • Listeria monocytogenes can asymptomatically inhabit the human intestine as a commensal bacterium. However, the mechanism by which L. monocytogenes is able to inhabit the intestine without pathogenic symptoms remains unclear. We compared the invasion efficiency of L. monocytogenes strains with the 268- and 385-bp-long actA gene. Clinical strains SMFM-CI-3 and SMFM-CI-6 with 268-bp actA isolated from patients with listeriosis, and strains SMFM-SI-1 and SMFM-SI-2 with the 385-bp gene isolated from carcasses, were used for inoculum preparation. The invasion efficiency of these strains was evaluated using Caco-2 cells (intestinal epithelial cell line), prepared as normal and healthy cells with tightened tight junctions and senescent cells with loose tight junctions that were loosened by adriamycin treatment. The invasion efficiency of L. monocytogenes strains with the 268-bp-long actA gene was 1.1-2.6-times lower than that of the strains with the 385-bp-long gene in normal and healthy cells. However, the invasion efficiency of both types of strains did not differ in senescent cells. Thus, L. monocytogenes strains with the 268-bp-long actA gene can inhabit the intestine asymptomatically as a commensal bacterium, but they may invade the intestinal epithelial cells and cause listeriosis in senescent cells.

Antiproliferative effect of Citrus junos extracts on A549 human non-small-cell lung cancer cells

  • Geum-Bi Ryu;Young-Ran Heo
    • Journal of Nutrition and Health
    • /
    • v.56 no.1
    • /
    • pp.12-23
    • /
    • 2023
  • Purpose: This study investigates the alterations in A549 human non-small-cell lung cancer (NSCLC) cells exposed to Citrus junos extract (CJE). We further examine the antiproliferative and apoptotic effects of CJE on NSCLC cells. Methods: Inhibition of proliferation was examined by applying the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) colorimetric assay on CJE-treated A549 NSCLC cells. The lactate dehydrogenase (LDH) assay was performed to measure the degree of toxicity of CJE on NSCLC cells. The effect on migratory proliferation was confirmed using the scratch wound healing assay. The antiproliferative effect of the CJE on human lung cancer cells was verified through morphological observation, fluorescence microscopy, and caspase-3 colorimetry. Results: Exposure of NSCLC cells to CJE resulted in a dose- and time-dependent decrease in cell activity and increased toxicity to the cells. In addition, microscopic observation revealed a reduced ability of the cancer cells to migrate and proliferate after exposure to the CJE, with simultaneous morphological apoptotic changes. Fluorescence staining and microscopic examination revealed that this death was a process of self-programmed cell death of NSCLC cells. Compared to unexposed NSCLC cells, the expression of caspase-3 was significantly increased in cells exposed to CJE. Conclusion: Exposure of A549 human NSCLC cells to CJE inhibits the proliferation, increases the cytotoxicity, and decreases the ability of cells to migrate and grow. Moreover, the expression of caspase-3 increases after CJE treatment, suggesting that the apoptosis of NSCLC cells is induced by a chain reaction initiated by caspase-3. These results indicate that Citrus junos is a potential therapeutic agent for human non-small-cell lung cancer.

Inhibitory Effects of Kimchi Extracts on the Growth and DNA Synthesis of Human Cancer Cells

  • Hur, young-Mi;Kim, So-Hee;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.107-112
    • /
    • 1999
  • Effect of solvent extracts and juice supernatants from kimchis on the growth of various human cancer cells was studied, comparing with the actions on the normal cells. Inhibitory effect of kimchi extracts on[3H] thymidine incorporation n cancer cells was also investigated. The methanol extract, hexane extract and methanol soluble fraction (MSF) of 3-week fermented kimchi did not have growth inhibitory effect on Ac2F rat normal liver cells at the concentrations of 0.5~2%. However, marked decrease in the growth of AGS human gastric cancer cells was shown by the treatment of those extacts. The juice from the kimchi samples also suppressed the growth of K-562 human leukemia cells and MG-63 human osteosarcoma cells. Especially, the juice of 3-week fermented kimchi exhibited the strong growth inhibitory effect in MG-63 human osteosarcoma cells. At the photomicrographs, growth inhibition and morphological change of the cells treated with kimchi juice were observed. And the solvent extracts of 3-week fermented kimchi suppressed the growth of cancer morethan the extracts or juices from fresh and 6-week fermented kimchi. When AGS human gastric cancer cels were treated with the extracts of 3-week fermented kimchi, [3H] thymidine incorporation in the cells also decreased. These results showed that kimchi extracts and juices had growth inhibitory effects on human osteosarcoma, leukemia and gastric cancer cells, but had no toxicity to the normal cells. We suggest that kimchi might have anticancer effect in part due to inhibition of the growth and DNA synthesis of cancer cells.

  • PDF

Antioxidative Effect of Rhus javanica Linne Extract Against Hydrogen Peroxide or Menadione Induced Oxidative Stress and DNA Damage in HepG2 Cells

  • Chun, Chi-Sung;Kim, Ji-Hyun;Lim, Hyun-Ae;Sohn, Ho-Yong;Son, Kun-Ho;Kim, Young-Kyoon;Kim, Jong-Sang;Kwon, Chong-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.150-155
    • /
    • 2004
  • The free radical scavenging activities and the protective effects of Rhus javanica extracts against oxidative damage induced by reactive oxygen species (ROS) were investigated. n-Hexane, ethyl acetate and water fractions were prepared from a methanol extract. DPPH radical, superoxide anion and hydroxyl radical scavenging activities were estimated. Intracellular ROS formation was quantified using fluorescent probes, 2', 7'-dichlorofluorescin diacetate (DCFH-DA) for hydroxyl radical and dihydroethidium (DHE) for superoxide anion. The oxidative DNA damage was investigated by the comet assay in HepG$_2$ cells exposed either to $H_2O$$_2$ or to menadione. The highest $IC_{50}$/ values for DPPH radical scavenging activity was found in the ethyl acetate fraction with a value of 5.38 $\mu\textrm{g}$/mL. Cells pretreated with $\geq$ 1 $\mu\textrm{g}$/mL of the ethyl acetate extract had significantly increased cell viability compared to control cells, which were not pretreated with the extract. Intracellular ROS formation and DNA damage in HepG$_2$ cells, which were pretreated with the various concentrations of Rhus javanica ethyl acetate extract and then incubated either with $H_2O$$_2$ or with menadione, reduced in a dose-dependent manner. These findings suggest that Rhus javanica might have biologically active components which have strong protective effects against ROS induced oxidative damages to the biomolecules, such as cell membranes and DNA.