• Title/Summary/Keyword: off-line algorithm

Search Result 281, Processing Time 0.041 seconds

On-line 스케줄링을 고려한 off-line 스케줄링

  • 김경훈;김영호;강석호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.162-165
    • /
    • 1997
  • 본 연구에서는 off-line 스케쥴링과 on-line 스케쥴링을 함께 고려하는 스케쥴링 메카니즘에 대해 설명하였다. 일반적으로 스케쥴링은 off-line 문제를 주로 다룬다. 그러나, off-line으로 생성된 스케쥴은 실시간으로 발생하는 여러 문제들(기계 고장, 긴급 주문등) 때문에 현실과 맞지 않게 되어 유용성이 떨어지는 경우가 자주 발생한다. 따라서 off-line 스케쥴링의 결과를 수행할때 위와 같은 문제가 발생할 경우, 스케쥴의 변화를 흡수하면서 off-line 스케쥴링의 결과를 최대한 유지할수 있는 on-line 스케쥴링에서 이 같은 스케쥴 실행시의 문제를 해결할 수 있도록 bidding 알고리즘을 사용하는 방법을 제시하였다.

  • PDF

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks

  • Song, Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1741-1751
    • /
    • 2007
  • The imprecise computation technique ensures that all time-critical tasks produce their results before their deadlines by trading off the quality of the results for the computation time requirements of the tasks. In the imprecise computation, most scheduling problems of satisfying both 0/1 constraints and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. In the previous studies, the reasonable strategies of scheduling tasks with the 0/1 constraints on uniprocessors and multiprocessors for minimizing the total error are proposed. But, these algorithms are all off-line algorithms. Then, in the on-line scheduling, NORA(No Off-line tasks and on-line tasks Ready upon Arrival) algorithm can find a schedule with the minimum total error. In NORA algorithm, EDF(Earliest Deadline First) strategy is adopted in the scheduling of optional tasks. On the other hand, for the task system with 0/1 constraints, NORA algorithm may not suitable any more for minimizing total error of the imprecise tasks. Therefore, in this paper, an on-line algorithm is proposed to minimize total error for the imprecise real-time task system with 0/1 constraints. This algorithm is suitable for the imprecise on-line system with 0/1 constraints. Next, to evaluate performance of this algorithm, a series of experiments are done. As a consequence of the performance comparison, it has been concluded that IOSMTE(Imprecise On-line Scheduling to Minimize Total Error) algorithm proposed in this paper outperforms LOF(Longest Optional First) strategy and SOF(Shortest Optional First) strategy for the most cases.

  • PDF

Integrated robot control system for off-line teaching (오프라인 교시작업을 위한 통합 로봇제어시스템의 구현)

  • 안철기;이민철;이장명;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.503-506
    • /
    • 1996
  • An integrated Robot control system for SCARA robot is developed. The system consists of an off-line programming(OLP), software and a robot controller using four digital signal processor(TMS32OC50). The OLP has functions of teaching task, dynamic simulator, three dimensional animation, and trajectory planning. To develop robust dynamic control algorithm, a new sliding mode control algorithm for the robot is proposed. The trajectory tracking performance of these algorithm is evaluated by implementing to SCARA robot(SM5 type) using DSP controller which has conventional PI-FF control algorithm. To make SCARA robot operate according to off-line teaching, an interface between OLP and robot controller in the integrated system is designed. To demonstrate performance of the integrated system, the proposed control algorithm is applied to the system.

  • PDF

Buffer Management Algorithms in Unbounded Buffers

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.721-724
    • /
    • 2010
  • In a network router, packet loss may occur when it overflows due to sudden burst traffic. This paper studies how much large buffers are required to eliminate the packet losses. There are buffers on which packet arrive and one output port to which a packet is transmitted at a time. The buffer management algorithm should determine one of the buffers whose packet is transmitted to the output port at each time. The front packet belonging to the buffer determined by the algorithm is transmitted. The goal is to minimize the sum of the lengths of buffers to transmit all the packets. We provide an optimal off-line algorithm and also we show the lower bounds of on-line algorithms. The on-line algorithm has no prior information of the packets having arrived in the future. Its performance is compared to that of the optimal off-line algorithm.

An AT2 Optimal Reconfigurable Mesh Algorithm for The Constrained Off-line Competitive Deletion Problem (제한된 오프라인 경쟁삭제 문제를 해결하기 위한 AT2 최적의 재구성 가능 메쉬 알고리즘)

  • Lee, Kwang-Eui
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.225-230
    • /
    • 2002
  • The constrained off-line competitive deletion problem is a simple form of the set manipulation operations problem. It excludes the insertion operation from the off-line competitive deletion problem. An optimal sequential algorithm and a CREW PRAM algorithm which runs $O(log^2nloglogn)$ time using O(n/loglogn) processors were already presented in the literature. In this paper, we present a reconfigurable mesh algorithm for the constrained off-line competitive deletion problem. The proposed algorithm is executed in a constant time on an $n{\times}n$ reconfigurable mesh, and the result is $AT^2$ optimal.

A Preliminary Cut-off Indoor Positioning Scheme Using Beacons (비콘을 활용하여 실내위치 찾는 사전 컷-오프 방식)

  • Kim, Dongjun;Park, Byoungkwan;Son, Jooyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.110-115
    • /
    • 2017
  • We propose a new indoor positioning algorithm named Cut-off algorithm. This algorithm cuts off candidates of beacons and reference points in advance, before looking for K neighbor reference points which are guessed to be closest to the user's actual location. The algorithm consists of two phases: off-line phase, and on-line phase. In the off-line phase, RSSI and UUID data from beacons are gathered at reference points placed in the indoor environment, and construct a fingerprint map of the data. In the on-line phase, the map is reduced to a smaller one according to the RSSI data of beacons received from the user's device. The nearest K reference points are selected using the reduced map, which are used for estimating user's location. In both phases, relative ranks of the peak signals received from each beacon are used, which smoothen the fluctuations of the signals. The algorithm is shown to be more efficient in terms of accuracy and estimating time.

A Study on the Capacity of the Off-line Station for PRT System (PRT 시스템의 역수용 용량결정에 관한 연구)

  • Lee, Jun-Ho;Jeong, Rac-Gyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1070-1074
    • /
    • 2010
  • In this study we deal with a simple computer simulation algorithm to decide the PRT station capacity. PRT system is different from the conventional rail traffic system in such point that the station is off-line so as to guarantee a very short headway. This characteristic has correlation with the accurate prediction of the line capacity and with the scale of the off-line station. In this paper physical factors and vehicles per hour that are necessary to decide the off-line station scale and the off-line station capacity, respectively, are shown through a simple compter simulations.

Path Optimization Using an Genetic Algorithm for Robots in Off-Line Programming (오프라인 프로그래밍에서 유전자 알고리즘을 이용한 로봇의 경로 최적화)

  • Kang, Sung-Gyun;Son, Kwon;Choi, Hyeuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.66-76
    • /
    • 2002
  • Automated welding and soldering are an important manufacturing issue in order to lower the cost, increase the quality, and avoid labor problems. An off-line programming, OLP, is one of the powerful methods to solve this kind of diversity problem. Unless an OLP system is ready for the path optimization in welding and soldering, the waste of time and cost is unavoidable due to inefficient paths in welding and soldering processes. Therefore, this study attempts to obtain path optimization using a genetic algorithm based on artificial intelligences. The problem of welding path optimization is defined as a conventional TSP (traveling salesman problem), but still paths have to go through welding lines. An improved genetic algorithm was suggested and the problem was formulated as a TSP problem considering the both end points of each welding line read from database files, and then the transit problem of welding line was solved using the improved suggested genetic algorithm.

A study on the exhaust noise reduction of automobile with the active muffler (엑티브 머플러를 이용한 실차 배기 소음 저감에 관한 연구)

  • Hong, Jin-Seok;Shin, Jun;Kim, Heung-Sub;Song, Jin-Ho;Oh, Jae-Eung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.283-287
    • /
    • 1996
  • The exhaust noise reduction of automobile with the active muffler is experimentally investigated. The control algorithm is the filtered-x LMS algorithm and the inverse algorithm with the adaptive line enhancer. Also, the control efficiency is increased with synthesized second harmonic engine frequency. In the experiment, the active muffler is applied to the end of exhaust system in automobile and the control with on-line secondary path modeling method(inverse algorithm) is compared the control of off-line secondary path modeling method. As secondary path transfer functions are changed, the experimental results show that the control performance with on-line method is more efficient than that with off-line method in the exhaust noise reduction of automobile.

  • PDF

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.