• Title/Summary/Keyword: offshore wind turbine

Search Result 361, Processing Time 0.041 seconds

Load simulation for offshore wind turbine (해상풍력터빈에 대한 하중 모사 방법 연구)

  • Suk, Sangmin;Lee, Sunggun;Chung, Chinhwa;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • In this paper, the purpose is a study on structural analysis for offshore wind turbine using commercial code. Because offshore wind turbine is subjected to great wind and wave force, it is necessary to analyse the dynamics and minimize the response of wind turbine. The offshore wind turbine tower is modelled as a single degree of freedom and multi degree of freedom structure. It is assumed that the blades, nacelle are composed of concentrated masses.

  • PDF

Wind Turbine Wake Model by Porous Disk CFD Model (다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구)

  • Shin, Hyungki;Jang, Moonseok;Bang, Hyungjun;Kim, Soohyun
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Dae-Yong;Park, Hyun-Chul;Chung, Chin-Wha;Kim, Yong-Chun;Lee, Seung-Min;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine (부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석)

  • Kim, Junbae;Shin, Hyunkyoung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm

  • Ahn, Dang;Shin, Sung-chul;Kim, Soo-young;Kharoufi, Hicham;Kim, Hyun-cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west-south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site. The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane ${\cdots}$ etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel. The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west-south wind farm.

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

Floating offshore wind turbine system simulation

  • Shi, Wei;Park, Hyeon-Cheol;Jeong, Jin-Hwa;Kim, Chang-Wan;Kim, Yeong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

Structural Vibration Analyses of a 5 MW Offshore Wind Turbine with Substructure (하부구조를 포함한 5MW급 천해용 해상 풍력발전기 구조진동해석)

  • Kim, Dong-Hwan;Kim, Dong-Hyun;Kim, Myung-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • In this study, structural vibration analyses for a 5MW offshore wind wind-turbine model have been performed for different substructure models. The efficient equivalent modeling method based on computational multi-body dynamics are applied to the finite element models of the present offshore wind turbines. Monopile and tri-pod substructure types of the typical offshore wind-turbine are considered herein. Detailed finite element modeling concepts and boundary conditions are described and the comparison results for previous analyses are presented in order to show the verification of the present numerical approach. Campbell diagrams are also present to investigate the rotational resonance characteristics of the offshore wind-turbines with different substructures.

  • PDF

Design Sensitivity and Optimum Design of Monopile Support Structure in Offshore Wind Turbine (해상풍력발전기 모노파일 설계민감도해석 및 최적설계)

  • Lee, Ji-Hyun;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.78-87
    • /
    • 2014
  • Recently the offshore wind turbine development is requested to be installed off south-west coast and Jeju island in Korea. Reliable and robust support structures are required to meet the demand on the offshore wind turbine in harsh and rapidly varying environmental conditions. Monopile is the most preferred substructure in shallow water with long term experiences from the offshore gas and oil industries. This paper presents an optimum design of a monopile connection with grouted transition piece (TP) for the reliable and cost-effective design purposes. First, design loads are simulated for a 5 MW offshore wind turbine in site conditions off the southwest coast of Korea. Second, sensitivity analysis is performed to investigate the design sensitivity of geometry and material parameters of monopile connection based on the ultimate and fatigue capacities according to DNV standards. Next, optimization is conducted to minimize the total mass and resulted in 30% weight reduction and the optimum geometry and material properties of the monopile substructure of the fixed offshore wind turbine.