• Title/Summary/Keyword: oligonucleotide adapter

Search Result 2, Processing Time 0.016 seconds

Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung;Kim, Hye-Ryoung;Mengoni, Alessio;Lee, Dong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.624-630
    • /
    • 2008
  • Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

The New LM-PCR/Shifter Method for the Genotyping of Microorganisms Based on the Use of a Class IIS Restriction Enzyme and Ligation-Mediated PCR

  • Krawczyk, Beata;Leibner-Ciszak, Justyna;Stojowska, Karolina;Kur, Jozef
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1336-1344
    • /
    • 2011
  • This study details and examines a novel ligation-mediated polymerase chain reaction (LM-PCR) method. Named the LM-PCR/Shifter, it relies on the use of a Class IIS restriction enzyme giving restriction fragments with different 4-base, 5' overhangs, this being the Shifter, and the ligation of appropriate oligonucleotide adapters. A sequence of 4-base, 5' overhangs of the adapter and a 4-base sequence of the 3' end of the primer(s) determine a subset of the genomic restriction fragments, which are amplified by PCR. The method permits the differentiation of bacterial species strains on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light. The usefulness of the LM-PCR/Shifter method for genotyping is analyzed by a comparison with the restriction endonuclease analysis of chromosomal DNA by the pulsed-field gel electrophoresis (REA-PFGE) and PCR melting profile (PCR MP) methods for isolates of clinical origin. The clustering of the LM-PCR/Shifter fingerprinting data matched those of the REA-PFGE and PCR MP methods. We found that the LM-PCR/Shifter is rapid, and offers good discriminatory power and excellent reproducibility, making it a method that may be effectively applied in epidemiological studies.