• Title/Summary/Keyword: one-dimensional

Search Result 6,733, Processing Time 0.041 seconds

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

The Accuracy of the Non-continuous I Test for One-Dimensional Arrays with References Created by Induction Variables

  • Zhang, Qing
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.523-542
    • /
    • 2014
  • One-dimensional arrays with subscripts formed by induction variables in real programs appear quite frequently. For most famous data dependence testing methods, checking if integer-valued solutions exist for one-dimensional arrays with references created by induction variable is very difficult. The I test, which is a refined combination of the GCD and Banerjee tests, is an efficient and precise data dependence testing technique to compute if integer-valued solutions exist for one-dimensional arrays with constant bounds and single increments. In this paper, the non-continuous I test, which is an extension of the I test, is proposed to figure out whether there are integer-valued solutions for one-dimensional arrays with constant bounds and non-sing ularincrements or not. Experiments with the benchmarks that have been cited from Livermore and Vector Loop, reveal that there are definitive results for 67 pairs of one-dimensional arrays that were tested.

Two­Dimensional Warranty Data Modelling (2차원 품질보증데이터 모델링)

  • Jai Wook Baik;Jin Nam Jo
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.219-225
    • /
    • 2003
  • Two­dimensional warranty data can be modelled using two different approaches: two­dimensional point process and one­dimensional point process with usage as a function of age. The first approach has three different models. First of all, bivariate model is appealing but is not appropriate for explaining warranty claims. Next, the rest of the two models (marked point process, and counting and matching on both directions independently) are more appropriate for explaining warranty claims. However, the second one (counting and matching on both directions independently) assumes that the two variables (variables representing the two­dimensions) are independent. Last of all, one­dimensional point process with usage as a function of age is also promising to explain the two­dimensional warranty claims. But the models or variations of them need more investigation to be applicable to real warranty claim data.

A Statistical-Mechanical Analysis of One-Dimensional Fluid of Rigid Rods (딱딱한 막대 모양 분자로 이루어진 1차원 유체의 통계 역학적 분석)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.45-50
    • /
    • 2009
  • Three-dimensional, statistical-mechanical formulations of problems are usually untractable analytically, and therefore they are commonly solved numerically. However, their one-dimensional counterparts are always to be solved analytically. In general analytical solutions sheds more insights to the problems than numerical solutions. Hence, solutions of one-dimensional problems may provide key properties to the problems, when they are extended to three dimensions. In this article, thermodynamic properties of one-dimensional fluid comprising molecules of rigid rods are analyzed statistical-mechanically. Molecules of rigid rods are characterized with repulsive or excluded volume effect. It is observed that this feature is well reflected in thermodynamic functions such as Helmholtz free energy. volumetric equation of state. chemical potential, entropy, etc.

Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin (사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교)

  • Kang, Hyung-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

INVARIANTS OF ONE-DIMENSIONAL DIFFUSION PROCESSES AND APPLICATIONS

  • Shinzo, Watanabe
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.637-658
    • /
    • 1998
  • One-dimensional diffusion processes are characterized by Feller's data of canonical scales and speed measures and, if we apply the theory of spectral functions of strings developed by M. G. Krein, Feller's data are determined by paris of spectral characteristic functions so that theses pairs may be considered as invariants of diffusions under the homeomorphic change of state spaces. We show by examples how these invariants are useful in the study of one-dimensional diffusion processes.

  • PDF

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe (속이 빈 원관에서 1차원적인 열전달 해석의 오차)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

Numerical Analysis in Heat Transfer of a Triangular Fin (삼각휜 열전달의 수치해석)

  • Chun, Sang-Myung;Kwon, Young-Pil
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.52-57
    • /
    • 1982
  • One-dimensional approximation for fin problems is widely used in current texts and industrial practice. The errors caused by this approximation is analysed for a longitudinal triangular fin by the numerical solution of two-dimensional fin equation. Two-dimensional solution is obtained by the finite element method and com pared with the one-dimensional esact solution. The results show that total heat transfer and fin efficiency are overestimated by the one-dimensional approximation. The factors which cause these errors are the Biot number (Bi) and the ratio of fin length to half the thickness (L/a). When Bi is smaller than 1.0 these errors are smaller than $10\%$, but when Bi is larger than 5.0 they are a few ten percents. Fin efficiency obtaned by one-dimensional and long fin assumption is valid only then Bi is small and L/a is large.

  • PDF

Synthesis and Characterization of One-Dimensional GaN Nanostructures Prepared via Halide Vapor-Phase Epitaxy

  • Byeun, Yun-Ki;Choi, Do-Mun;Han, Kyong-Sop;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.142-146
    • /
    • 2007
  • High-quality one-dimensional GaN nanorods and nanowires were synthesized on Ni-coated c-plan sapphire substrate using halide vapor-phase epitaxy (HVPE). Their structure and optical properties were investigated by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence techniques. Full substrate coverage of densely packed, uniform, straight and aligned one-dimensional GaN nanowires with a diameter of 80nm were grown at $700{\sim}900^{\circ}C$. The X-ray diffraction patterns, transmission electron microscopic image, and selective area electron diffraction patterns indicate that the one-dimensional GaN nanostructures are a pure single crystalline and preferentially oriented in the [001] direction. We observed high optical quality of GaN nanowires by photoluminescence analysis.