• Title/Summary/Keyword: open section

Search Result 479, Processing Time 0.021 seconds

An implementation of MMS on full MAP environment (Full MAP에서의 MMS구현)

  • Choi, Yobb;Ha, Jeong-Hyeon;Chae, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.761-766
    • /
    • 1990
  • Manufacturing Message Specification(MMS) was sewed as an International Standard by International Standardization Organization(ISO). MMS is being accepted throughout the world as a solution to communications among multi vendor factory floor environments. This paper describes an implementation of MMS which operates on Application Layer of Open Systems Interconnection(OSI) 7 layer model. MMS was implemented on MSDOS in apersonal computer environment.

  • PDF

A Method for Creating Global Routes for Unmanned Ground Vehicles Using Open Data Road Section Data (공개데이터 도로구간 정보를 활용한 무인지상차량의 전역경로 생성 방법)

  • Seungjae Yun;Munchul Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.31-43
    • /
    • 2023
  • In this paper, we propose a method for generating a global path for an unmanned vehicle using public data of road section information. First, the method of analyzing road section information of the Ministry of Land, Infrastructure and Transport is presented. Second, we propose a method of preprocessing the acquired road section information and processing it into meaningful data that can be used for global routes. Third, we present a method for generating a global path using the preprocessed road section information. The proposed method has proven its effectiveness through actual autonomous driving experiments of unmanned ground vehicles.

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

Lateral Buckling Analysis of Open Section Composite Laminated Beam Under End-Moment (단모멘트를 받는 개단면 박벽 복합재 보의 횡좌굴 해석)

  • 김만호;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.51-58
    • /
    • 2000
  • Lateral buckling behavior of laminated composite thin-walled I-section beams subjected to bending moment is investigated by applying the nonlinear anisotropic thin-walled beam theory. The constituent laminated thin-walled elements of I-section are assumed to be symmetrically laminated. The bending, twisting, and warping stiffnesses of the cross section are obtained based on the definitions of these stiffnesses In the thin-walled anisotropic beam theory In numerical examples, singly-symmetric I-beams with specially orthotropic, quasi-isotropic, angle-plys and various boundary conditions are considered. To validate the proposed theoretical approach, present analytical solutions are compared with three dimensional finite element solutions.

  • PDF

A Study on Determination of Shear Center of Beam Having Arbitrary Cross Section (임의의 단면을 갖는 보의 전단중심 결정에 관한 연구)

  • O, Taek-Yeol;Byeon, Chang-Hwan;Yu, Yong-Seok;Gwon, Yeong-Ha
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2002
  • It is important to determinate the shear center of beam having arbitrary cross-section in structures. In this study, we have introduced the determination of shear center that gets the equivalent stiffness matrix representing arbitrary cross section of beam and applies energy equivalence theory. This method shows the results of applying on examples that we know the exact and approximate solution of open and cross section of beam. This study also compares with the shear center of composite rotor blade got by the experiment and by the suggested method.

A Study on Determination of Shear Center of Beam with Arbitrary Cross Section

  • Oh, Teak-Yul;Byun, Chang-Hwan;Known, Young-Ha
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.39-44
    • /
    • 2003
  • It is important to find the shear center of beam with arbitrary cross-section in structures. In this study, it is introduced to determine the shear center that gets the equivalent stiffness matrix representing arbitrary cross section of beam and applies concepts of equivalent energy. This method shows the results of applying on examples that the exact and approximate solution of open and cross section of beam is known. The shear center of composite rotor blade by the experiment and by the suggested method was compared in this study.

On the Strength Analysis of the Stiffener with Asymmetric Cross Section (비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析))

  • S.J.,Yim;Y.S.,Yang;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.