• Title/Summary/Keyword: open section

Search Result 479, Processing Time 0.028 seconds

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Algorithm for Freight Transportation Performance Estimation on Expressway Using TCS and WIM Data (TCS 및 WIM 데이터를 활용한 고속도로 화물수송실적 산정 알고리즘 개발)

  • Youjeong Kang;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.116-130
    • /
    • 2023
  • Expressways play pivotal roles in cargo transportation because of their superior accessibility and mobility compared to rail and air. On the other hand, there is a limit to the accurate calculation of cargo transportation performance using existing highways owing to the mixture of vehicle types and difficulty in identifying cargo loads of individual cargo vehicles. This paper presents an algorithm for calculating more reliable cargo transportation performance using big data. The traffic performance (veh·km/day) was derived using the data collected from Toll Collecting System. The average tolerance weight for each vehicle type and the cargo load unit (ton/unit) considering it was calculated using vehicle specification information data and high-speed and low-speed axis data. This study calculated the cargo transportation performance by section and type using various online integrated highway data and presented a method for calculating the transportation performance by linking open business offices and private highways.

Shoreline Change Analysis of Haeundae Beach Using Airborne LiDAR Survey (항공 LiDAR 측량을 이용한 해운대 해안의 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;We, Gwang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.561-567
    • /
    • 2008
  • In this study, shoreline change was analyzed by RTK-GPS and advanced airborne LiDAR survey. For extraction of coastline, first of all, tide correction was conducted at all RTK-GPS points through the comparing with the corresponding tidal height, and cross section providing coastline was produced using Autocad Civil3D program. Comparing with two results of RTK-GPS (first, 29 Aug 2007; second, 6 Oct 2007) surveys, coastline of the first result had been decreased about 21m compare with that of the second. And it was also demonstrated that the length of coastline by the first RTK-GPS was 15m shorter than that by the airborne LiDAR survey (Dec. 2006). In addition, we recoquized that the erosion appeared in the top right-hand (dock area); the sediment in the bottom left-hand (Chosun beach area) of the Haeundae beach. As a result, therefore, it was learned that artificial sand filling for beach open and natural effects such as a typhoon, current drift, wind direction gave cause for area changes and coastline.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

Normative Building Types and Layout of Ruling Class Residences in the Seoul area in the Early Joseon Dynasty (조선 전기 서울 지역 지배층 저택의 규범적 건물 유형과 배치)

  • Lee, Jong-Seo
    • Journal of architectural history
    • /
    • v.32 no.5
    • /
    • pp.69-80
    • /
    • 2023
  • Before the 15th century, the main buildings of the residences of the ruling class in Seoul consisted of Momchae(身梗), Seocheong(西廳), and Naeru(內樓)‧Chimru(寢樓). Based on the equality of the relationship between husband and wife, the couple lived in the main building[Momchae] in the center of the mansion, but based on the individuality of the relationship between husband and wife, each had an area consisting of the same section within the building. Naeru·Chimru was the two floors bedroom building became a common living space for the minister and wife, upstairs in summer, downstairs in winter. In preparation for large gatherings and important receptions, an open-structured West Hall(西廳) was located on the west side of the mansion. Momchae, Seocheong, and Naeru‧Chimru were the common building types and layouts of the residences of the highest ruling class, including high-ranking officials, until the reign of King Sejong. However, from around the time of King Seongjong, Seocheong and Chimru came to be regarded as privileged and luxurious buildings only allowed for the grand prince's residence. The layout of the bedroom, main building (including Wings), Outer Sarang[外舍廊], and Joyangru[朝陽樓] of Prince Bongrim's mansion built in the first half of the 17th century clearly shows the transitional period when the arrangement of chimru, main building, and western office was disrupted and the layout changed to the Inner main building(Anchae for wife) and Outer main building(Sarangchae for husband).

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Students' Experience and Preference on Student Activities in the Clothing & Textiles Section of Middle School 'Technology.Home Economics' Textbooks (중학교 기술.가정 교과서 의생활 영역 옷차림 단원의 활동과제에 대한 학습자의 수행경험과 선호도 조사 연구)

  • Eo, Ji-Hyun;Oh, Kyung-Wha
    • Journal of Korean Home Economics Education Association
    • /
    • v.21 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • This study is intended to provide fundamental information to improve the quality of student activities presented in the Clothing & Textiles How to Dress Appropriately' section of the current middle school 'Technology Home Economics' textbooks so that Home Economics may better reflect students' interests, making it applicable in real life. The survey was conducted to 154 male and 160 female students on their preferences regarding student activities. The results are as follows. First, students who like clothing & textiles section regard "Opportunities to take part in various kinds of practices and student activities" as the major reason for preference. And the single biggest reason why they dislike the unit was due to "Too much contents to be memorized." Among various contents regarding dress in the unit, "How to Wear Clothes That Look Good on Me, and the Right Ways to Wear Them" attracted the most attention, regardless of what contents they consider necessary, interesting, or helpful in real life. Second, as for the time of implementation of the activities, students preferred "End of each class". They also preferred small-group activities (group size), well-structured problems (type of problems) and tasks that require analysis based on theoretical principles through experiments and practices (methods of implementation). Third, the findings as to the actual experience of conducting the student activities indicated that, in most cases, student activities were conducted in accordance to what was suggested in the textbooks, but not to what the students preferred. Therefore, in order to make home economics more applicable to students, it is desirable to focus on their everyday lives as is favored by the students, and increase small-group activities. Also, suggesting various and comprehensive problematic situations such as non-structured, open-ended problems and encouraging diverse implementation would be helpful in improving students' critical and creative thinking abilities.

  • PDF