• Title/Summary/Keyword: operator matrices

Search Result 95, Processing Time 0.022 seconds

PROPERTIES OF OPERATOR MATRICES

  • An, Il Ju;Ko, Eungil;Lee, Ji Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.893-913
    • /
    • 2020
  • Let 𝓢 be the collection of the operator matrices $\(\array{A&C\\Z&B}\)$ where the range of C is closed. In this paper, we study the properties of operator matrices in the class 𝓢. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class 𝓢 and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class 𝓢, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl's theorem and a-Browder's theorem, respectively.

RANK-PRESERVING OPERATORS OF NONNEGATIVE INTEGER MATRICES

  • SONG, SEOK-ZUN;KANG, KYUNG-TAE;JUN, YOUNG-BAE
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.671-683
    • /
    • 2005
  • The set of all $m\;{\times}\;n$ matrices with entries in $\mathbb{Z}_+$ is de­noted by $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. We say that a linear operator T on $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ is a (U, V)-operator if there exist invertible matrices $U\;{\in}\; \mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ and $V\;{\in}\;\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ such that either T(X) = UXV for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$, or m = n and T(X) = $UX^{t}V$ for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. In this paper we show that a linear operator T preserves the rank of matrices over the nonnegative integers if and only if T is a (U, V)­operator. We also obtain other characterizations of the linear operator that preserves rank of matrices over the nonnegative integers.

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

MATRICES OF TOEPLITZ OPERATORS ON HARDY SPACES OVER BOUNDED DOMAINS

  • Chung, Young-Bok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1421-1441
    • /
    • 2017
  • We compute explicitly the matrix represented by the Toeplitz operator on the Hardy space over a smoothly finitely connected bounded domain in the plane with respect to special orthonormal bases consisting of the classical kernel functions for the space of square integrable functions and for the Hardy space. The Fourier coefficients of the symbol of the Toeplitz operator are obtained from zeroth row vectors and zeroth column vectors of the matrix. And we also find some condition for the product of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

Linear Preservers of Perimeters of Nonnegative Real Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.465-472
    • /
    • 2008
  • For a nonnegative real matrix A of rank 1, A can be factored as $ab^t$ for some vectors a and b. The perimeter of A is the number of nonzero entries in both a and b. If B is a matrix of rank k, then B is the sum of k matrices of rank 1. The perimeter of B is the minimum of the sums of perimeters of k matrices of rank 1, where the minimum is taken over all possible rank-1 decompositions of B. In this paper, we obtain characterizations of the linear operators which preserve perimeters 2 and k for some $k\geq4$. That is, a linear operator T preserves perimeters 2 and $k(\geq4)$ if and only if it has the form T(A) = UAV or T(A) = $UA^tV$ with some invertible matrices U and V.

SPANNING COLUMN RANKS OF NON-BINARY BOOLEAN MATRICES AND THEIR PRESERVERS

  • Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.507-521
    • /
    • 2019
  • For any $m{\times}n$ nonbinary Boolean matrix A, its spanning column rank is the minimum number of the columns of A that spans its column space. We have a characterization of spanning column rank-1 nonbinary Boolean matrices. We investigate the linear operators that preserve the spanning column ranks of matrices over the nonbinary Boolean algebra. That is, for a linear operator T on $m{\times}n$ nonbinary Boolean matrices, it preserves all spanning column ranks if and only if there exist an invertible nonbinary Boolean matrix P of order m and a permutation matrix Q of order n such that T(A) = PAQ for all $m{\times}n$ nonbinary Boolean matrix A. We also obtain other characterizations of the (spanning) column rank preserver.

ISOLATION NUMBERS OF INTEGER MATRICES AND THEIR PRESERVERS

  • Beasley, LeRoy B.;Kang, Kyung-Tae;Song, Seok-Zun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.535-545
    • /
    • 2020
  • Let A be an m × n matrix over nonnegative integers. The isolation number of A is the maximum number of isolated entries in A. We investigate linear operators that preserve the isolation number of matrices over nonnegative integers. We obtain that T is a linear operator that strongly preserve isolation number k for 1 ≤ k ≤ min{m, n} if and only if T is a (P, Q)-operator, that is, for fixed permutation matrices P and Q, T(A) = P AQ or, m = n and T(A) = P AtQ for any m × n matrix A, where At is the transpose of A.