• Title/Summary/Keyword: optimal parameter

Search Result 1,846, Processing Time 0.037 seconds

Decentralized Optimal Control of Distributed Parameter Systems (분포정수계의 분산형 최적제어에 관한 연구)

  • 안두수;이명규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1075-1085
    • /
    • 1990
  • This paper presents a new method for the optimal control of the distributed parameter systems by a decentralized computational procedure. Approximate lumped parameter models are derived by using the Galerkin method employing the Legendre polynomials as the basis functions. The distributed parameter systems, however, are transformed into the large scale lumped parameter models. And thus, the decentralized control scheme is introduced to determine the optimal control inputs for the obtained lumped parameter models. In addition, an approach to block pulse functions is applied to solve the optimal control problems of the obtained lumped parameter models. The proposed method is simple and efficient in computation for the optimal control of distributed paramter systems. Illustrative examples given to demonstrate the validity of the presently proposed method.

  • PDF

Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform (고속 WALSH 변환에 의한 분포정수계의 최적제어)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

Necessary Conditions of Optimal Distributed Parameter Control Systems (분포정수계통의 최적제어 필요조건)

  • Kyung Gap Yang
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.21-23
    • /
    • 1970
  • Necessary conditions of optimal distributed parameter control systems, Hamiltons coanonical equations, welerstress condition, transversality condition and boundary condition are obtained, when the control function is constrained and the performance index takes on the general form. Also it is concluded that the lumped parameter system is the special case of the distributed parameter system.

  • PDF

Design of the Optimal Input Singals for Parameter Estimation in the ARMAX Model (ARMAX 모델의 매개변수 추정을 위한 최적 입력 신호의 설계)

  • 이석원;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.180-185
    • /
    • 1988
  • This paper considers the problem of the optimal input design for parameter estimtion in the ARMAX model in which the system and noise transfer function have the common denominator polynomial. Deriving the information matrix, in detail, for the assumed model structure and using the autocorrelation functin of the filtered input as design variables, it is shown that D-optimal input signal can be realized as an autoregressive moving average process. Computer simulations are carried out to show the standard-deviation reduction in the parameter estimtes using the optimal input signal.

  • PDF

The Optimal Parameter Design of CD-R Substrate

  • Jhang, Jhy-Ping;Lin, Shi-Hao
    • International Journal of Quality Innovation
    • /
    • v.6 no.2
    • /
    • pp.105-115
    • /
    • 2005
  • In recent years, high-speed recording CD-R has already become the mainstream of CD-R market. Therefore, to promote the efficiency of recording CD-R is of significant importance. This study uses Taguchi's parameter design to improve the yield rate for the process of CD-R substrate. We have found 13 three-level controllable factors from the fishbone diagram, repeated 10 times the experiment with the L27(313) orthogonal array, and measured seven quality characteristics. We employ four general methods to find the optimal parameter conditions individually. Then, we perform the confirmation experiment and compare the results. Finally, we obtain the optimal parameter conditions. According to the analysis of benefits, the optimal parameter conditions can reduce the quality loss of CD-R substrate to about 21%. In the future, the results can be extended to other research of DVD-R substrate.

EXISTENCE OF OPTIMAL SOLUTION AND OPTIMALITY CONDITION FOR PARAMETER IDENTIFICATION OF AN ECOLOGICAL SPECIES SYSTEM

  • LI CHUNFA;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.273-286
    • /
    • 2005
  • Parameter identification problem of a three species (predator, mutualist-prey, and mutualist) ecological system with reaction-diffusion phenomenon is investigated in this paper. The mathematical model of the parameter identification problem is constructed and continuous dependence of the solution for the direct problem on the parameters identified is obtained. Finally, the existence of optimal solution and an optimality necessary condition for the parameter identification problem are given.

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

A study on tuning parameter selection for MDPDE (MDPDE의 조율모수 선택에 관한 연구)

  • Yu, Donghyeon;Kim, Byungsoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.549-559
    • /
    • 2015
  • The MDPDE is an attractive alternative to maximum likelihood estimator because of the strong robustness properties that it inherently possess. The characteristics of MDPDE can be varied with the tuning parameter, in general, there is a trade-off between robustness and asymptotic efficiency. Hence, selection of optimal tuning parameter is important but complicated task. In this study, we introduce two optimal tuning parameter selection methods proposed by Fujisawa and Eguchi (2005) and Warwick (2006). Through simulation study, we found out that Warwick's method yields excessively small optimal tuning parameter in certain cases while Fujisawa and Eguchi's method performs well. Therefore, we think Fujisawa and Eguchi's method can be used commonly for finding optimal tuning parameter of MDPDE.

Parameter Study for Optimal Design of Smart TMD (스마트 TMD의 최적설계를 위한 파라메터 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF