• Title/Summary/Keyword: optimum cross section

Search Result 174, Processing Time 0.024 seconds

Efficient NLP Techniques for the Optimum Design of Simple Steel Plate Girder Cross Section (단순강판형 단면의 최적설계를 위한 효율적인 비선형계획기법)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.111-122
    • /
    • 1994
  • In this study, an algorithm which can be applied to the optimum design of simple steel plate girders was developed, and efficient optimization strategies for the solution of algorithm were found out. The optimum design algorithm consists of 3-levels of optimization. In the first and second levels of optimization, the absolute maximum bending moment and shearing force are extracted and in the third level of optimization, the optimum cross section of steel plate girder is determined. For the optimum design of cross section, the objective function is formulated as the total area of cross section and constraints are derived in consideration of the various stresses and the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge. Sequential unconstrained minimization technique using the exterior penalty function method(SUMT-EP), sequential linear programming(SLP) and sequential quadratic programming (SQP) are proved to be efficient and robust strategies for the optimum design of simple plate girder cross section. From the reliable point of view, SLP is the most efficient and robust strategy and SQP is the most efficient one from the viewpoint of converguency and computing time.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge II : Optimum Section with 30m Span Length Accounting for Dynamic Stability (프리스트레스트 콘크리트 거더 철도교의 최적설계 II: 동적안정성을 고려한 30m 지간의 최적단면)

  • Lee Jong-Min;Kim Su-Hyun;Jung Jae-Dong;Lee Jong-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.102-109
    • /
    • 2006
  • The PSC girders which currently used at highway bridge have the standard cross sections about 25m, 30m and 35m span. Thus, in case of highway bridge design, the bridge designer can choose the adequate standard cross section according to constructional condition. However, in railway bridge design, there are limitations on reasonable bridge design considering circumstances of a construction site and conditions of location etc, because the PSC girders used at railway bridge have the cross section about only 25m span length. In this study, the optimum design for the PSC girder railway bridge with 30m span length has been performed. Also, in order to investigate the dynamic stability of railway bridge using the optimum section of PSC girder, dynamic analysis has been carried out. From the results of analysis, it is suggested to denote the optimum section which satisfied the structural safety, dynamic stability and economical efficiency all together.

Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine (자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화)

  • Kim, Do-Joong;Kim, Young-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.

Optimization Study of a Helicopter Rotor Blade Section Using EDISON Ksec2D and Grid Search Method (EDISON Ksec2D와 Grid Search 법을 이용한 헬리콥터 블레이드 단면의 형상 최적화)

  • Na, Deok-Hwan;Hahm, Jae-Joon;Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.183-189
    • /
    • 2016
  • In this paper, an optimization study on a helicopter rotor blade cross-section was made. Generalization was made to the baseline cross-section to simplify the analysis. To have better performance in aeroelastic response, with the aerodynamic center being the origin of the baseline, the distance between aerodynamic center and shear center, and the distance between mass center and shear center of the blade were minimized. For efficient searching of optimum solutions over the design space, grid search method, which is a method of graphical search was used. Two design variables, radius of balancing weight at leading edge, and offset of the spar from leading edge were selected for the study. Cubic spline interpolation method was used to accommodate searching of the optimum solution. 2-Leveled searching system was devised in accordance with the interpolation method. Optimum solution was found to show 6% decrease in both distance between aerodynamic center and shear center, and mass center and shear center to the baseline.

  • PDF

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.

Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method (최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계)

  • Kim, Cheol;Ha, Tae-jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

A Study on the Structural Optimum Design Method of Composite Rotor Blade Cross-Section using Genetic Algorithm (유전자 알고리즘을 이용한 복합재 로터 블레이드 단면 구조 최적설계방법에 관한 연구)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • In this paper, the structural optimum design method of composite rotor blade cross-section was investigated with the genetic algorithm. An auto-mesh generation program was developed for iterative calculations of optimum design, and stresses in the blade cross-section were analyzed by VABS (variational asymptotic beam sectional analysis) program. Minimum mass of rotor blade was defined as an object function, and stress failure index, center mass and blade minimum mass per unit length were chosen as constraints. Finally, design parameters such as the thickness and layup angles of a skin, and the thickness, position and width of a torsion box were determined through the structural optimum design method of composite rotor blade cross-section presented in this paper.

Formability of deep drawing process for L-shape cross section (L형 단면 딥드로잉 가공에서의 성형성)

  • 김상진;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.16-22
    • /
    • 1996
  • Two kinds of blank shapes, optimum and square, are adopted to investigate formbility. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose , rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup detph and strain distribution are measured experimetally for the products of the two kinds of blank shapes, which are optimum and square.It is confirmed that deeper cup without severe thickness reduction can be obtained fro the optimum shape.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.