• Title/Summary/Keyword: organic thin-film transistor

Search Result 285, Processing Time 0.041 seconds

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.

Polymer thin film organic transistor characteristics with plasma treatment of interlayers (플라즈마 표면처리에 따른 유기트랜지스터 특성)

  • Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.797-803
    • /
    • 2013
  • In this paper, we fabricated insulator thin films by plasma polymerization method for organic thin film transistor's insulator layer. For improving the electrical characteristics of organic transistor, we treated the semiconductor thin film with $O_2$ plasma. As results, the surface energy of organic transistor was increased from $38mJ/m^2$ to $72mJ/m^2$ and the mobility of organic transistor was increased $0.057cm^2V^{-1}s^{-1}$, that is increased 29% average ratio. Therefore, we have known that oragnic transistor's mobility can improve with plasma treatment of semiconductor thin film's surface.

X-shaped Conjugated Organic Materials for High-mobility Thin Film Transistor

  • Choi, Dong-Hoon;Park, Chan-Eon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.310-311
    • /
    • 2009
  • New X-shaped crystalline molecules have been synthesized through various coupling reactions and their electronic properties were investigated. They exhibit good solubility in common organic solvents and good self-film forming properties. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform and preferred orientations of molecules. They also exhibited high field effect mobilities in thin film transistor (TFT) and good device performances.

  • PDF

RC Oscillator Based on Organic Thin Film Transistor

  • Kim, Seung-Kyum;Kim, Sang-Woo;Moon, Byeong-Cheon;Choi, Woon-Seop;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1336-1339
    • /
    • 2007
  • Since organic thin film transistor (OTFT) provides simple and low cost processes, its application to the OTFT display has been studied. We developed an RC oscillator using organic thin film transistor and inverters with bootstrapping transistors. Device parameters were optimized by the simulation and OTFT RC oscillators were fabricated. The oscillator frequency and its dependence on resistance and bias voltage were studied. The organic TFT is adequate for low cost and simple process integrated circuits. The frequency of oscillation was simulated and measured. It is acceptable for low-cost microelectronic device and flat panel displays.

  • PDF

Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films as Gate Dielectric for Organic Thin Film Transistor

  • Ao, Wei;Lim, Jae-Sung;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.836-841
    • /
    • 2011
  • Plasma polymerized methyl methacrylate (ppMMA) thin films were deposited by plasma polymerization technique with different plasma powers and subsequently thermally treated at temperatures of 60 to $150^{\circ}C$. To find a better ppMMA preparation technique for application to organic thin film transistor (OTFT) as dielectric layer, the chemical composition, surface morphology, and electrical properties of ppMMA were investigated. The effect of ppMMA thin-film preparation conditions on the resulting thin film properties were discussed, specifically O-H site content in the pMMA, dielectric constant, leakage current density, and hysteresis.

Organic thin-film transistors and transistor diodes with transfer-printed Au electrodes

  • Cho, Hyun-Duck;Lee, Min-Jung;Yoon, Hyun-Sik;Char, Kook-Heon;Kim, Yeon-Sang;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1122-1124
    • /
    • 2009
  • Organic thin-film transistors (OTFTs) were fabricated by using the transfer patterning method. In order to remove Au pattern easily, UV-curable polymer mold was surface treated. Au source/drain (S/D) pattern was transferred to insulator-coated substrate surface. Fabricated OTFTs were compared to OTFTs using vacuum-deposited Au S/D. Additionally, transistor diodes were characterized.

  • PDF

Organic Transistor Characteristics with Electrode Structures (전극 구조에 따른 유기 트랜지스터 특성)

  • Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, We have fabricated PMMA thin films by plasma polymerization method for organic thin film transistor's insulator layer. For improving the characteristics of organic transistor, we tested transistor's mobility and output values with organic transistor's electrode structures. As a results, the mobility of top contact was $8{\times}10^{-3}[cm^2V^{-1}s^{-1}]$, that of bottom contact was $2{\times}10^{-4}[cm^2V^{-1}s^{-1}]$. Also, off current of bottom contact was increased. Therefore, we recommend the top contact electrode structure of organic transistor.

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;김준호;신재훈;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • Organic thin film transitors(OTFT) are of interest for use in broad area electronic applications. And recently organic electroluminescent devices(OELD) have been intensively investigated for using in full-color flat-panel display. We have fabricated inverted-staggered structure OTFTs at lower temperature using the fused-ring polycyclic aromatic hydrocarbon pentacene as the active eletronic material and photoacryl as the organic gate insulator. The field effect mobility is 0.039∼0.17 ㎠/Vs, on-off current ratio is 10$\^$6/, and threshold voltage is -7V. And here we report the study of driving emitting, Ir(ppy)$_3$, phosphorescent OELD with all organic thin film transistor and investigated its electrical characteristics. The OELD with a structure of ITO/TPD/8% Ir(ooy)$_3$ doped in BCP/BCP/Alq$_3$/Li:Al/Al and OTFT with a structure of inverted-stagged Al(gate electrode)/photoacry(gate insulator)/pentacene(p-type organic semiconductor)/ Au(source-drain electrode) were fabricated on the ITP patterned glass substrate. The electrical characteristics are turn-on voltage of -10V, and maximum luminance of about 90 cd/㎡. Device characteristics were quite different with that of only OELD.

Organic Electrophosphorescent Device driven by Organic Thin-Film Transistor (유기 TFT로 구동한 유기 인광발광소자의 연구)

  • Kim, Yun-Myoung;Pyo, Sang-Woo;Kim, Jun-Ho;Shim, Jae-Hoon;Zyung, Tae-Hyung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.312-315
    • /
    • 2001
  • Recently organic electroluminescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decrease rapidly as the luminance increase, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all organic thin film transistor(OTFT). The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)$_3$/BCP/Alq$_3$/Li:Al/Al. In OTFT. polymer is used as an insulator and pentacene as an active layer. Detailed performance of the integrated device will be discussed.

  • PDF