• Title/Summary/Keyword: oscillator phase noise

Search Result 432, Processing Time 0.024 seconds

A Study of Phase Noise Due to Power Supply Noise in a CMOS Ring Oscillator

  • Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.184-186
    • /
    • 2005
  • The effect of power supply noise on the phase noise of a ring oscillator is studied. The power supply noise source in series with DC power supply voltage is applied to a 3 stage CMOS ring oscillator. The phase noise due to the power supply noise is modeled by the narrow band phase modulation. The model is verified by the fact that the spectrum of output of ring oscillator has two side bands at the frequencies offset from the frequency of the ring oscillator by the frequency of the power supply noise source. Simulations at several different frequency of the power supply noise reveals that the ring oscillator acts as a low pass filter to the power supply noise. This study, as a result, shows that the phase noise generated by the power supply noise is inversely proportional to the frequency offset from the carrier frequency.

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

A Novel Phase Noise Reduction In Oscillator Using PBG(Photonic Band Gap) Structure and Feedforward Circuit

  • Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.204-207
    • /
    • 2005
  • In this paper, PBG structure and feedforward circuit has been used to suppress the phase noise of the oscillator. Microstrip line resonator have low Q, but we can obtain high LO power by feedforward circuit and improve the resonator Q by the PBG, simultaneously. The proposed oscillator which uses PBG and feedforward circuit shows 0${\~}$20 dB phase noise reduction compared to the conventional oscillator. We have obtained -115.8 dBc of phase noise at 100 kHz offset from 2.4 GHz center.

Design and Implement of the Frequency-Shifting Module for the Improvement of Phase Noise Performance (위상잡음 특성을 개선한 주파수 변환 모듈의 설계 및 제작)

  • 변종대;하태웅;김진수;박준석;임재봉
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.273-278
    • /
    • 2004
  • This paper analyzed the phase noise characteristics of frequency-shifting module by figuring out the relationship between the phase noise components of 1st and 2nd local oscillator composing the frequency-shifting module and those of RF output signals shifted in frequency. Also, frequency-shifting module with the improvement of the phase noise performance was designed and implemented by means that the phase noise components of 1st local oscillator were cancelled in the output signal. Output signal has been affected by only phase noise of 2nd local oscillator, which had excellent phase noise performance than that of the 1st local oscillator.

A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks (센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

Phase Noise Reduction Technique in Oscillator Using PBG (PBG를 이용한 Oscillator의 Phase Noise Reduction에 관한 연구)

  • 오익수;서철헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.358-361
    • /
    • 2003
  • In this paper, a new technique to reduce the phase noise in microwave oscillators is proposed using the resonant characteristics of the Photonic Bandgap(PBG). Microstrip line resonator has the low Q(Qaulity factor). Therefore, as PBG structure was applied, we examined that the phase noise of the oscillator has been reduced.

  • PDF

The effect of 1/f Noise Caused by Random Telegraph Signals on The Phase Noise and The Jitter of CMOS Ring Oscillator (Random Telegraph Signal에 의한 1/f 잡음이 CMOS Ring Oscillator의 Phase Noise와 Jitter에 미치는 영향)

  • 박세훈;박세현;이정환;노석호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.682-684
    • /
    • 2004
  • The effect of 1/f noise by the random telegraph signal(RTS) on the phase noise and the jitter of CMOS ring Oscillator is investigated. 10 parallel piece-wise-linear current sources connected to each node model the RTS signals. The In, the power spectral density and the jitter of output of the ring oscillator are simulated as functions of the amplitude and time constant of RTS current source. It is confirmed that the increase of amplitude of RTS is directly related to the increase of the width of phase noise md the value of jitter. The shorter the time constant is, the wider width of FET peak and the larger value of cycle to cycle jitter are.

  • PDF

Design of Low Phase Noise Frequency Synthesizer for Digital MMDS Downconverter (디지털 MMDS 하향변환기용 저 위상잡음 주파수 합성기의 설계)

  • 김영진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • In this paper, Phase locked microwave oscillator having the low phase noise and high stability for digital MMDS down converter was designed. we have been analyzed the low phase noise properties by the active device nonlinear equivalent circuits and derived the necessary and sufficient conditions for high stable voltage control oscillator. And it is applied to phase locked loop, we design the phase locked microwave oscillator of frequency synthesizer. Experimental results of designed phase locked oscillator shows -85dBc/Hz @ 10KHz phase noise properties and simulation result is -90Bc/Hz @ 10kHz respectively we shows that proposed low phase noise and stable conditions of phase locked microwave oscillator can be applied to design the high stable digital MMDS frequency synthesizer.

The jitter and phase noise caused by 1/f noise of MOSFET in 2.75 GHz CMOS ring oscillator

  • Park, Se-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2005
  • It has been known that 1/f noise of MOSFET is generated by superposition of random telelgraph signals (RTS). In this study, jitters and phase noise caused by 1/f noise of MOSFET are analysed with RTS supplied to all of the nodes of the CMOS ring oscillator under investigation. Through the analysis of jitters and jitter ratios with varying values of the amplitude of RTS, it is found that the jitters and the jitter ratios are proportional to the amplitude of RTS. And the analysis of FFT of the output of the ring oscillator reveals that the jitters are closely related to the phase noise of the high order harmonics of the ring oscillator outputs.

Aperture Coupled Cylindrical Resonator Oscillator (Aperture Coupled 원통형 공동 공진기 발진기)

  • 나인주;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.119-126
    • /
    • 2003
  • In this paper, a cylindrical cavity resonator oscillator with high Q factor is designed and fabricated to improve the phase noise characteristic. A cavity resonator is coupled to oscillating circuit using aperture hole. Measured results show that the cylindrical cavity resonator oscillator (CRO) for Ku-band has less phase noise than the dielectric resonator oscillator (DRO) with the same oscillating circuit. It has output power of +3.92 dBm at the center frequency 13.4015250 GHz and phase noise of -109 dBc/Hz at 100 kHz offset.