• Title/Summary/Keyword: osmotic regulation

Search Result 48, Processing Time 0.031 seconds

Phosphorylation of AQP4 Water Channel Regulates Water Permeability (Aquaporin 4 water channel 인산화에 의한 수분 투과도의 조절)

  • 박권희;정동근;정진섭;이재숙;예운해;서덕준;배혜란
    • Journal of Life Science
    • /
    • v.10 no.5
    • /
    • pp.456-466
    • /
    • 2000
  • Aquaperin 4 (AQP4) is the mercurial water channel expressed abundantly in brain, especially the region related with cerebrospinal fluid reabsorption and osmoregulation. The primary structure of AQP4 water channel was elucidated but the molecular mechanism of AQP4 channel regulation is still unknown. To investigate the possible regulation of AQP4 water channel by phosphorylation via various protein kinases, osmotic water permeability of AQP4 expressed in Xenopus oocytes was measured by videomicroscopy technique. Forskolin (10 $\mu$M) did not affect osmotic water permeability of oocytes injected with AQP4 cRNA, excluding the regulation of AQP4 water cnannel by protein kinase A. Osmotic water permeability (P아래첨자) of AQP4-expressed oocytes was ingibited by the pretreatmeat of BAPTA/AM (up to 500$\mu$M), an intracellular Ca윗첨자 chelator, and calmidazolium (100$\mu$M), a specific Ca윗첨자/calmodulin antagonist, in a dose-dependent manner. The inhibition of osmotic water permeability (P아래첨자) by the calmidazolium treatment was completely reversed by the addition of calyculin A (0.1$\mu$M), a nonspecific phosphatase inhibitor. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, had biphasic effects on osmotic water permeability in AQP4 cRNA injected oocytes depending on its concentration; 21% increase by 100 nM PMA, 35% decrease by 1$\mu$M PMA. These effects were reversed with 2$\mu$M staurosporine, a nonspecific PKC inhibitor. These results suggest that phosphorylation of AQP4 water channel by Ca윗첨자/calmodulin kinase and protein kinase C might regulate the osmotic water permeability.

  • PDF

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

An Theoretical Analysis of Electro-osmotic Flow in 2-dimensional slit with Electrical Double Layers in Interaction (전기 이중층의 상호작용을 고려한 2차원 슬릿 내의 전기삼투 유동에 관한 이론적 해석)

  • Lee, Dae-Keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.497-500
    • /
    • 2006
  • An theoretical analysis on the electro-osmotic flow in a 2-dimensional slit, that is induced by an external electric field acting on the electrical double layers near the slit wall, was performed. Especially, although there were many studies on the interacting electrical double layers, it was found in this study that they have several physical or mathematical fallacies. To resolve these, the general solution on the charge-regulating slit with the height as a parameter was obtained. The results of this work can provide the electrokinetic solution of nanoscale slit with the electrical double layer interaction as well as that of microscale slit without the interaction and can be used as the benchmark of a numerical analysis and the reference of electrokinetic flow path design.

  • PDF

Regulation of Leaf Senescence by NTL9-mediated Osmotic Stress Signaling in Arabidopsis

  • Yoon, Hye-Kyung;Kim, Sang-Gyu;Kim, Sun-Young;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.438-445
    • /
    • 2008
  • Leaf senescence is a highly regulated genetic process that constitutes the last stage of plant development and provides adaptive fitness by relocating metabolites from senescing leaves to reproducing seeds. Characterization of various senescence mutants, mostly in Arabidopsis, and genome-wide analyses of gene expression, have identified a wide array of regulatory components, including transcription factors and enzymes as well as signaling molecules mediating growth hormones and environmental stress responses. In this work we demonstrate that a membrane-associated NAC transcription factor, NTL9, mediates osmotic stress signaling in leaf senescence. The NTL9 gene is induced by osmotic stress. Furthermore, activation of the dormant, membrane-associated NTL9 is elevated under the same conditions. A series of senescence-associated genes (SAGs) were upregulated in transgenic plants overexpressing an activated form of NTL9, and some of them were slightly but reproducibly downregulated in a T-DNA insertional NTL9 knockout mutant. These observations indicate that NTL9 mediates osmotic stress responses that affect leaf senescence, providing a genetic link between intrinsic genetic programs and external signals in the control of leaf senescence.

AtHAP3b Plays a Crucial Role in the Regulation of Flowering Time in Arabidopsis during Osmotic Stress

  • Chen, Nai-Zhi;Zhang, Xiu-Qing;Wei, Peng-Cheng;Chen, Qi-Jun;Ren, Fei;Chen, Jia;Wang, Xue-Chen
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1083-1089
    • /
    • 2007
  • The HAP complex has been found in many eukaryotic organisms. HAP recognizes the CCAAT box present in the promoters of 30% of all eukaryotic genes. The HAP complex consists of three subunits - HAP2, HAP3 and HAP5. In this paper, we report the biological function of the AtHAP3b gene that encodes one of the HAP3 subunits in Arabidopsis. Compared with wild-type plants, hap3b-1 and hap3b-2 mutants exhibited a delayed flowering time under long-day photoperiod conditions. Moreover, the transcription levels of FT were substantially lower in the mutants than in the wild-type plants. These results imply that AtHAP3b may function in the control of flowering time by regulating the expression of FT in Arabidopsis. In a subsequent study, AtHAP3b was found to be induced by osmotic stress. Under osmotic stress conditions, the hap3b- 1 and hap3b-2 mutants flowered considerably later than the wild-type plants. These results suggest that the AtHAP3b gene plays more important roles in the control of flowering under osmotic stress in Arabidopsis.

Targeting the Osmotic Stress Response for Strain Improvement of an Industrial Producer of Secondary Metabolites

  • Godinez, Octavio;Dyson, Paul;del Sol, Ricardo;Barrios-Gonzalez, Javier;Millan-Pacheco, Cesar;Mejia, Armando
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1787-1795
    • /
    • 2015
  • The transition from primary to secondary metabolism in antibiotic-producing Streptomyces correlates with expression of genes involved in stress responses. Consequently, regulatory pathways that regulate specific stress responses are potential targets to manipulate to increase antibiotic titers. In this study, genes encoding key proteins involved in regulation of the osmotic stress response in Streptomyces avermitilis, the industrial producer of avermectins, are investigated as targets. Disruption of either osaBSa, encoding a response regulator protein, or osaCSa, encoding a multidomain regulator of the alternative sigma factor SigB, led to increased production of both oligomycin, by up to 200%, and avermectin, by up to 37%. The mutations also conditionally affected morphological development; under osmotic stress, the mutants were unable to erect an aerial mycelium. In addition, we demonstrate the delivery of DNA into a streptomycete using biolistics. The data reveal that information on stress regulatory responses can be integrated in rational strain improvement to improve yields of bioactive secondary metabolites.

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee;Lee, Ha-Yeon;Ryu, Yeon-Woo;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1064-1068
    • /
    • 2011
  • The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

Optimization of Protoplast Preparation and Regeneration of a Medicinal Fungus Antrodia cinnamomea

  • Wu, Jyun-De;Chou, Jyh-Ching
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Antrodia cinnamomea is a unique medicinal fungus in Taiwan. It has been found rich in some pharmacologically active compounds for anti-cancer, hangover, and immune regulation etc. With the in-depth study of these components, it would be interesting and important to establish a molecular system for basic studies of A. cinnamomea. Thus, we would like to set up a foundation for this purpose by studying the A. cinnamomea protoplast preparation and regeneration. Firstly, we studied the optimization method of protoplast preparation of A. cinnamomea, and found various factors that may affect the yield during protoplast preparation, such as mycelial ages, pH values, and osmotic stabilizers. Secondly, in the regeneration of protoplasts, we explored the effects of various conditions on the regeneration of protoplasts, including different media and osmotic pressure. In addition, we found that citrate buffer with pH value around 3 dramatically increased the regeneration of protoplasts of A. cinnamomea, and provided a set of regeneration methodology for A. cinnamomea.

Inhibitions of $H^+$-ATPases and Ion Channels by Lanthanum

  • Kim, Young-Kee;Cho, Kwang-Hyun;Park, Soo-Jin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.39-39
    • /
    • 2001
  • Many physiological processes of plant cells, such as nutrient uptake, salt tolerance, and cell enlargement, are mediated by ion transports across the plasma membrane. H$^{+}$-ATPases on both plasma and vacuolar membranes play major roles on active transports and ion channels mediate passive transports of various ions. It has been known that these proteins involved in cellular osmotic regulation and salt tolerance in the salt-accumulated soils.(omitted)

  • PDF