• Title/Summary/Keyword: overlapping error

Search Result 80, Processing Time 0.037 seconds

Element Technology and Strategy of Digital Twin in the Water Treatment (수처리공정의 디지털 트윈 요소기술과 추진 전략)

  • Young-Man Cho;Yong-Jun Jung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.284-290
    • /
    • 2023
  • Domestic water supply and sewage facilities are rapidly aging and maintenance difficulties such as aging of operation and management personnel are overlapping, so Digital Twin technology is attracting attention as an intelligent means of process management. Digital twin projects for domestic water treatment processes include the smart sewage treatment project promoted by the Ministry of Environment, projects independently promoted by some local governments, and digital twin purification plant projects promoted by K-water. However, the content of digital twin promotion is different for each institution. Therefore, in the water treatment process, technological standardization and step-by-step implementation methods for digital twins must be preceded to reduce trial and error in future business promotion. This study aims to provide an efficient promotion plan by prescribing the digital twin element technology and composition method in the water treatment process and reviewing the contents currently being promoted by the Ministry of Environment, local governments, and K-Water individually.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks (이중 랜드마크 인식 기반 AGV 이동 제어)

  • Jeon, Hye-Gyeong;Hong, Youn-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.721-730
    • /
    • 2012
  • In this paper the problem of a moving control of an automatic guided vehicle(AGV) which transports a dead body to a designated cinerator safely in a crematorium, an special indoor environment, will be discussed. Since a method of burying guided lines in the floor is not proper to such an environment, a method of moving control of an AGV based on infrared ray sensors is now proposed. With this approach, the AGV emits infrared ray to the landmarks adheres to the ceiling to find a moving direction and then moves that direction by recognizing them. One of the typical problems for this method is that dead zone and/or overlapping zone may exist when the landmarks are deployed. To resolve this problem, an algorithm of recognizing double landmarks at each time is applied to minimize occurrences of sensing error. In addition, at the turning area to entering the designated cinerator, to fit an AGV with the entrance of the designated cinerator, an algorithm of controlling the velocity of both the inner and outer wheel of it. The functional correctness of our proposed algorithm has been verified by using a prototype vehicle. Our real AGV system has been applied to a crematorium and it moves automatically within an allowable range of location error.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

3D Model Construction and Evaluation Using Drone in Terms of Time Efficiency (시간효율 관점에서 드론을 이용한 3차원 모형 구축과 평가)

  • Son, Seung-Woo;Kim, Dong-Woo;Yoon, Jeong-Ho;Jeon, Hyung-Jin;Kang, Young-Eun;Yu, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.497-505
    • /
    • 2018
  • In a situation where the amount of bulky waste needs to be quantified, a three-dimensional model of the wastes can be constructed using drones. This study constructed a drone-based 3D model with a range of flight parameters and a GCPs survey, analyzed the relationship between the accuracy and time required, and derived a suitable drone application technique to estimate the amount of waste in a short time. Images of waste were photographed using the drone and auto-matching was performed to produce a model using 3D coordinates. The accuracy of the 3D model was evaluated by RMSE calculations. An analysis of the time required and the characteristics of the top 15 models with high accuracy showed that the time required for Model 1, which had the highest accuracy with an RMSE of 0.08, was 954.87 min. The RMSE of the 10th 3D model, which required the shortest time (98.27 min), was 0.15, which is not significantly different from that of the model with the highest accuracy. The most efficient flight parameters were a high overlapping ratio at a flight altitude of 150 m (60-70% overlap and 30-40% sidelap) and the minimum number of GCPs required for image matching was 10.

Underground Facility Survey and 3D Visualization Using Drones (드론을 활용한 지하시설물측량 및 3D 시각화)

  • Kim, Min Su;An, Hyo Won;Choi, Jae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In order to conduct rapid, accurate and safe surveying at the excavation site, In this study, the possibility of underground facility survey using drones and the expected effect of 3D visualization were obtained as follows. Phantom4Pro 20MP drones have a 30m flight altitude and a redundant 85% flight plan, securing a GSD (Ground Sampling Distance) value of 0.85mm and 4points of GCP (Groud Control Point)and 2points of check point were calculated, and 7.3mm of ground control point and 11mm of check point were obtained. The importance of GCP was confirmed when measured with low-cost drones. If there is no ground reference point, the error range of X value is derived from -81.2 cm to +90.0 cm, and the error range of Y value is +6.8 cm to 155.9 cm. This study classifies point cloud data using the Pix4D program. I'm sorting underground facility data and road pavement data, and visualized 3D data of road and underground facilities of actual model through overlapping process. Overlaid point cloud data can be used to check the location and depth of the place you want through the Open Source program CloudCompare. This study will become a new paradigm of underground facility surveying.

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.

A Study on Stroke Extraction for Handwritten Korean Character Recognition (필기체 한글 문자 인식을 위한 획 추출에 관한 연구)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.375-382
    • /
    • 2002
  • Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.

Estimation of Weaning Age Effects on Growth Performance in Berkshire Pigs

  • Do, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.151-162
    • /
    • 2012
  • Analysis for back fat thickness (BFAT) and daily body weight gains from birth to the end of a performance test were conducted to find an optimal method for estimation of weaning age effects and to ascertain impacts of weaning age on the growth performance of purebred Berkshire pigs from a closed population in Korea. Individual body weights were measured at birth (B), at weaning (W: mean, 22.9 d), at the beginning of the performance test (P: mean, 72.7 d), and at the end of the performance test (T: mean, 152.4 d). Further, the average daily gains in body weight (ADG) of 3,713 pigs were analyzed for the following periods: B to W (DGBW), W to P (DGWP), P to T (DGPT), B to P (DGBP), B to T (DGBT), and W to T (DGWT). Weaning ages ranged from 17 to 34 d, and were treated as fixed (WF), random with (WC) and random without (WU) consideration of an empirical relationship between weaning ages in the models. WF and WC produced the lowest AIC (Akaike Information Criterion) and least fractions of error variance components in multi-traits analysis, respectively. The fractions of variances due to diverse weaning age and the weaning age correlations among ADGs of different stages (when no overlapping allowed) by WC ranged from 0.09 to 0.35 and from -0.03 to 0.44, respectively. The maximum weaning age effects and optimal back fat thicknesses were attained at weaning ages of 27 to 32 d. With the exception of DGBW, the effects of weaning age on the ADGs increased (ranging from 1.50 g/d to 7.14 g/d) with increased weaning age. In addition, BFAT was reduced by 0.106 mm per increased day in weaning age. In conclusion, WC produced reasonable weaning age correlations, and improved the fitness of the model. Weaning age was one of crucial factors (comparable with heritability) influencing growth performance in Berkshire pigs. Further, these studies suggest that increasing weaning age up to 32 d can be an effective management strategy to improve growth performance. However, additional investigations of the costs and losses related to extension of the suckling period and on the extended range of weaning age are necessary to determine the productivity and safety of this practice in a commercial herd and production system.