• Title, Summary, Keyword: oyster shell

Search Result 366, Processing Time 0.029 seconds

A study on the Calcination Characteristics and Supporter for Durability using waste shell such as Crassostrea gigas (패각의 소성 특성 및 지속성 담지체 제조에 관한 연구)

  • Kim, Yong-Ryul;Yoon, Cheol-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2009
  • Today, wastes of much quantity by fast industrialization and increase in population, population concentration etc. of modem society are increasing. Much oyster shell is breeding by character and conduct of oyster-industry for a long time among them. Oyster shell which breed by-product in oyster cultivating industry that specific gravity of domestic seashore cultivating industry is high is causing environmental problem by problem and so on hindrance, nature spectacle's waste and health hygiene on administration if it is pollution of district along the coast fishing ground, number of public ownership being stored in open area in seashore. About new material just-in-time through recycling and he of oyster shell by these problem wide that study. Go forward more and investigate special quality that is oyster shell's physical chemistry red in this research and oyster shell oyster shell which cause several environmental problems developing ability agricultural chemicals that use this encapsulating micro by ability carrier that is environmentally application possibility examine wish to.

An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete (패분 콘크리트의비파괴 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF

Physical and Mechanical Properties of Concrete with Oyster Shell (패분을 혼입한 콘크리트의 물리.역학적 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.86-91
    • /
    • 1999
  • This study is performed to evaluate the physical and meanical properties of oyster shell concrete. The result shows that the unit weights of concrete with oyster shell are less by 15 ~2% than that of the normla cement concrete. The highest strengths are achieved by 2.5% oyster shell concrete , with increased compressive strength by 4% , tensile strength by 6% and bending strength by 7% than that of the normal cement concrete, respectively. The static modulusof elasticity is in the range of 290$\times$10$^3$~314 $\times$10$^3$kgf/㎤ for 2.5~7.0% oyster shell concrete,which has showed about the same compared to that of the normal cement concrete. The Poisson's number of oyster shell concrete is less than that of the normal cement concrete. Accordingly, oyster shell concrete will improve the properties of concrete.

  • PDF

Strength and Fire Resistance Characteristics of Oyster Shell Aggregate with Increasing Mass Ratio (굴 패각 골재의 질량비 증가에 따른 강도 및 내화특성)

  • Hong, Snag-Hun;You, Nam Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • /
    • pp.26-27
    • /
    • 2017
  • Oyster packs generate about 150,000 tons a year. Various studies are under way to utilize this oyster shell. Ca is the main component of oyster shell and is used as a raw material of refractory board. Studies on application of refractory board using oyster shell are also continuing. It is expected that the refractory characteristics will be improved as the mass of oyster shell, that is Ca, increases. In this study, mortar specimens and board specimens were fabricated by increasing the mass ratio of oyster shells classified below 0.6mm, 1.2 ~ 0.6mm, 2.5 ~ 1.2mm and 5.0 ~ 2.5mm, and the strength and fire resistance characteristics were examined.

  • PDF

The Characteristics of Municipal wastewater Sludge Dewatering Using Oyster Shell Powder (굴껍질을 이용한 하수슬러지의 탈수특성에 관한 기초연구)

  • 신남철;문종익;정유진;장혜정;성낙창
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2000
  • The objective of this study is to examine the subsitiution effect of the waste oyster shell powder as the conditioning agent in municipal wasterwater sludge dewatering process. Beacuse the oyster shells have a large amount(about 38% by weight) of alkaline minerals, such as calcium and magnesium, they are thought to have the potential as a good conditioning agent. In this study, the physico-chemical properties of powdered oyster shells (75${\mu}{\textrm}{m}$ or 200 mesh) and the dewatering characteristics of municipal waste water sludge using powdered oyster shells and CaCO3 are investigated. The conclusions are as follows, 1. Oyster shell could produce calcium ions up to 14ppm at pH-7.0, and this represents that oyster shell is a potential properties as a good conditioner. 2. 100ml of wastewater sludges, conditioned with pretreated oyster shell, are dewatered to the level of 25% solid concentration. 3. Wasterwater sludges, conditioned with oyster shell and CaCO3 are dewatered to the level of 32% solid concentration. And this shows that two-stage combined conditioning process is desirable than the one-stage conditioning process.

  • PDF

A Study on the Rational Recycling of Oyster-Shell (굴 패각의 합리적 이용 방안에 관한 연구)

  • Baek, Eun-Young;Lee, Won-Goo
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.2
    • /
    • pp.71-87
    • /
    • 2020
  • Oysters are the most abundantly harvested type of shellfish in Korea. As export of this marine product increases, oysters have greatly contributed to an increase in fishing income. As the oyster aquaculture industry has rapidly grown since the late 1990s, issues of oyster-shell processing that occur in production processes have re-emerged as important topics in the oyster industry. The amount of oyster shells harvested in 2019 is estimated to be approximately 300,000 tons. With reductions in demand for pyrolytic fertilizer and feed, which are currently the greatest sources of demand, unprocessed shell quantities have doubled compared to 2018, causing them to be an issue once more. Such oyster-shell processing also incurs great costs, and a total of forty-six billion three hundred fifty million Korean won (46,350,000,000 KRW) has been provided from 2009 to 2020 for the use of oyster shells as a resource. According to current Korean laws, oyster shells are considered to be industrial waste if more than 300 kilograms are sent out in a day. Collection and processing must be conducted by a waste-consignment company. Consequently, there are many limitations to the use of oyster shells in Korea as a resource. However, in Japan, only oyster-shell waste is regulated by waste-processing As a result, local governments may apply exceptions when utilized as organic matter. Consequently, in Japan, oyster shells are being used as resources in more diverse fields than in Korea. This study observes the conditions and problems of oyster-shell processing in Korea and attempts to find new domestic oyster-shell resource solutions in light of Japan's recycling practices.

Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

  • Cho, Min Guk;Bae, Su Min;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.571-578
    • /
    • 2017
  • This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE $L^*$ values decreased as the amount of added egg shell calcium powder increased. CIE $a^*$ values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

A Study on the Estimation of Greenhouse Gas Using Oyster Shell Recycling for Paper Filler

  • Park, Seung-Chel;Seo, Ran-Sug;Kim, Sung-Hu
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study has conducted greenhouse gas emission reduction test as using Oyster-shells originated PCC paper filler compare to non-Oyster shells used PCC. This examination was estimated and calculated in accordance with both IPCC (Intergovernmental Panel on Climate Change) and World Business Council for Sustainable Development (WBSCD). The greenhouse gas emission reduction estimation result indicates that, when oyster shells are recycled and used as paper filler, it reduces $27.97tCO_2\;per\;100\;ton$ of oyster shells. It is greenhouse gas emission $44.27tCO_2$ from PCC production changed to carbon emission reduction when replaced with oyster shell. LNG greenhouse gas emission $16.3tCO_2$ in relation to the pre-treatment with oyster shell per 100 ton is also reflected. As a result, it is assumed that roughly $0.2797tCO_2/oyster\;shell{\cdot}ton$.

Evaluation of Improvement on Sediment for Practical Application in Prawn Farm (새우 양식장에 적용을 위한 저질개선 평가)

  • Kim Woo-Hang;Kim Doo Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • /
    • pp.81-84
    • /
    • 2004
  • Control of Sediment is very important in prawn farm due to the eruption of toxic material such as W1ionized H2S, NH3 and NO2-. In this study, column test study, column with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment ammonia-N(NH3) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion(NH4+) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of NH4+, which is not toxic for prawn because oyster shell was stably kept around pH 8. Therefore, some of ammonia(NH3) was reduced by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells

  • Lee, Se-Young;Kim, Hak-Ju;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-$1{\beta}$ (IL-$1{\beta}$), Interleukin-6 (IL-6) and TNF-${\alpha}$] in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Cell viability, as measured by the MTT assay, showed that oyster shell extract had no significant cytotoxicity in Raw 264.7 cells. The treatment with oyster shell extract decreased the generation of intracellular reactive oxygen species dose dependently and increased antioxidant enzyme activities, such as SOD, catalase, GSH-px in LPS-stimulated macrophage cells. Oyster shell extract significantly suppressed the production of NO and also decreased the expressions of iNOS, COX-2 and NF-${\kappa}B$. Additionally, oyster shell extract significantly inhibited the production of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-stimulated Raw 264.7 cells. Thus, these results showed that the oyster shell extract had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells.