• Title, Summary, Keyword: p-Laplacian

Search Result 96, Processing Time 0.043 seconds

Modified Phillips-Tikhonov regularization for plasma image reconstruction with modified Laplacian matrix

  • Jang, Si-Won;Lee, Seung-Heon;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.472-472
    • /
    • 2010
  • The tomography has played a key role in tokamak plasma diagnostics for image reconstruction. The Phillips-Tikhonov (P-T) regularization method was attempted in this work to reconstruct cross-sectional phantom images of the plasma by minimizing the gradient between adjacent pixel data. Recent studies about the comparison of the several tomographic reconstruction methods showed that the P-T method produced more accurate results. We have studied existing Laplacian matrix used in Phillips-Tikhonov regularization method and developed modified Laplacian matrix (Modified L). The comparison of the reconstruction result by the modified L and existing L showed that modified L produced more accurate result. The difference was significantly pronounced when a portion of plasma was reconstructed. These results can be utilized in the Edge Plasma diagnostics; especially in divertor diagnostics on tokamak a large impact is expected. In addition, accurate reconstruction results from received data in only one direction were confirmed through phantom test by using P-T method with modified L. These results can be applied to the tangentially viewing pin-hole camera diagnostics on tokamak.

  • PDF

EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR SOME p(x)-LAPLACIAN-LIKE PROBLEMS VIA VARIATIONAL METHODS

  • AFROUZI, G.A.;SHOKOOH, S.;CHUNG, N.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.11-24
    • /
    • 2017
  • Using variational methods, we study the existence and multiplicity of weak solutions for some p(x)-Laplacian-like problems. First, without assuming any asymptotic condition neither at zero nor at infinity, we prove the existence of a non-zero solution for our problem. Next, we obtain the existence of two solutions, assuming only the classical Ambrosetti-Rabinowitz condition. Finally, we present a three solutions existence result under appropriate condition on the potential F.

EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEM WITH CONCAVE-CONVEX NONLINEARITIES

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.921-936
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of weak solutions of a weak solutions of a class of p-q-Laplacian system involving concave-convex nonlinearities: $$\{\array{-{\Delta}_pu-{\Delta}_qu={\lambda}V(x)|u|^{r-2}u+\frac{2{\alpha}}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\;x{\in}{\Omega}\\-{\Delta}p^v-{\Delta}q^v={\theta}V(x)|v|^{r-2}v+\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\;x{\in}{\Omega}\\u=v=0,\;x{\in}{\partial}{\Omega}}$$ where ${\Omega}$ is a bounded domain in $R^N$, ${\lambda}$, ${\theta}$ > 0, and 1 < ${\alpha}$, ${\beta}$, ${\alpha}+{\beta}=p^*=\frac{N_p}{N_{-p}}$ is the critical Sobolev exponent, ${\Delta}_su=div(|{\nabla}u|^{s-2}{\nabla}u)$ is the s-Laplacian of u. when 1 < r < q < p < N, we prove that there exist infinitely many weak solutions. We also obtain some results for the case 1 < q < p < r < $p^*$. The existence results of solutions are obtained by variational methods.

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

SYMMETRIC SOLUTIONS FOR A FOURTH-ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL $p$-LAPLACIAN AT RESONANCE

  • Yang, Aijun;Wang, Helin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.161-171
    • /
    • 2012
  • We consider the fourth-order differential equation with one-dimensional $p$-Laplacian (${\phi}_p(x^{\prime\prime}(t)))^{\prime\prime}=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t)$) a.e. $t{\in}[0,1]$, subject to the boundary conditions $x^{\prime\prime}}(0)=0$, $({\phi}_p(x^{\prime\prime}(t)))^{\prime}{\mid}_{t=0}=0$, $x(0)={\sum}_{i=1}^n{\mu}_ix({\xi}_i)$, $x(t)=x(1-t)$, $t{\in}[0,1]$, where ${\phi}_p(s)={\mid}s{\mid}^{p-2}s$, $p$ > 1, 0 < ${\xi}_1$ < ${\xi}_2$ < ${\cdots}$ < ${\xi}_n$ < $\frac{1}{2}$, ${\mu}_i{\in}\mathbb{R}$, $i=1$, 2, ${\cdots}$, $n$, ${\sum}_{i=1}^n{\mu}_i=1$ and $f:[0,1]{\times}\mathbb{R}^3{\rightarrow}\mathbb{R}$ is a $L^1$-Carath$\acute{e}$odory function with $f(t,u,v,w)=f(1-t,u,-v,w)$ for $(t,u,v,w){\in}[0,1]{\times}\mathbb{R}^3$. We obtain the existence of at least one nonconstant symmetric solution by applying an extension of Mawhin's continuation theorem due to Ge. Furthermore, an example is given to illustrate the results.

DOUBLY NONLINEAR PARABOLIC EQUATIONS INVOLVING p-LAPLACIAN OPERATORS VIA TIME-DISCRETIZATION METHOD

  • Shin, Kiyeon;Kang, Sujin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1179-1192
    • /
    • 2012
  • In this paper, we consider a doubly nonlinear parabolic partial differential equation $\frac{{\partial}{\beta}(u)}{{\partial}t}-{\Delta}_pu+f(x,t,u)=0$ in ${\Omega}{\times}[0,T]$, with Dirichlet boundary condition and initial data given. We prove the existence of a discrete approximate solution by means of the Rothe discretization in time method under some conditions on ${\beta}$, $f$ and $p$.

MULTIPLICITY OF POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL P-LAPLACIAN

  • Zhang, Youfeng;Zhang, Zhiyu;Zhang, Fengqin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1211-1220
    • /
    • 2009
  • In this paper, we consider the multipoint boundary value problem for the one-dimensional p-Laplacian $({\phi}_p(u'))'$(t)+q(t)f(t,u(t),u'(t))=0, t $\in$ (0, 1), subject to the boundary conditions: $u(0)=\sum\limits_{i=1}^{n-2}{\alpha}_iu({\xi}_i),\;u(1)=\sum\limits_{i=1}^{n-2}{\beta}_iu({\xi}_i)$ where $\phi_p$(s) = $|s|^{n-2}s$, p > 1, $\xi_i$ $\in$ (0, 1) with 0 < $\xi_1$ < $\xi_2$ < $\cdots$ < $\xi{n-2}$ < 1 and ${\alpha}_i,\beta_i{\in}[0,1)$, 0< $\sum{\array}{{n=2}\\{i=1}}{\alpha}_i,\sum{\array}{{n=2}\\{i=1}}{\beta}_i$<1. Using a fixed point theorem due to Bai and Ge, we study the existence of at least three positive solutions to the above boundary value problem. The important point is that the nonlinear term f explicitly involves a first-order derivative.

  • PDF

INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS

  • Hassan, Taher S.;Kong, Qingkai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1017-1030
    • /
    • 2012
  • We consider forced second order differential equation with $p$-Laplacian and nonlinearities given by a Riemann-Stieltjes integrals in the form of $$(p(t){\phi}_{\gamma}(x^{\prime}(t)))^{\prime}+q_0(t){\phi}_{\gamma}(x(t))+{\int}^b_0q(t,s){\phi}_{{\alpha}(s)}(x(t))d{\zeta}(s)=e(t)$$, where ${\phi}_{\alpha}(u):={\mid}u{\mid}^{\alpha}\;sgn\;u$, ${\gamma}$, $b{\in}(0,{\infty})$, ${\alpha}{\in}C[0,b)$ is strictly increasing such that $0{\leq}{\alpha}(0)<{\gamma}<{\alpha}(b-)$, $p$, $q_0$, $e{\in}C([t_0,{\infty}),{\mathbb{R}})$ with $p(t)>0$ on $[t_0,{\infty})$, $q{\in}C([0,{\infty}){\times}[0,b))$, and ${\zeta}:[0,b){\rightarrow}{\mathbb{R}}$ is nondecreasing. Interval oscillation criteria of the El-Sayed type and the Kong type are obtained. These criteria are further extended to equations with deviating arguments. As special cases, our work generalizes, unifies, and improves many existing results in the literature.

REMARKS ON THE INFINITY WAVE EQUATION

  • Huh, Hyungjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.451-459
    • /
    • 2021
  • We propose the infinity wave equation which can be derived from the exponential wave equation through the limit p → ∞. The solution of infinity Laplacian equation can be considered as a static solution of the infinity wave equation. We present basic observations and find some special solutions.

Signal-to-Noise Ratio Formulas of a Scalar Gaussian Quantizer Mismatched to a Laplacian Source

  • Rhee, Ja-Gan;Na, Sang-Sin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.384-390
    • /
    • 2011
  • The paper derives formulas for the mean-squared error distortion and resulting signal-to-noise (SNR) ratio of a fixed-rate scalar quantizer designed optimally in the minimum mean-squared error sense for a Gaussian density with the standard deviation ${\sigma}_q$ when it is mismatched to a Laplacian density with the standard deviation ${\sigma}_q$. The SNR formulas, based on the key parameter and Bennett's integral, are found accurate for a wide range of $p\({\equiv}\frac{\sigma_p}{\sigma_q}\){\geqq}0.25$. Also an upper bound to the SNR is derived, which becomes tighter with increasing rate R and indicates that the SNR behaves asymptotically as $\frac{20\sqrt{3{\ln}2}}{{\rho}{\ln}10}\;{\sqrt{R}}$ dB.