• Title/Summary/Keyword: p-phenylenediamine

Search Result 86, Processing Time 0.03 seconds

The Crystal Structure of p-Phenylenediamine Dihydrobromide. (p-Phenylenediamine Dihydrobromide의 結晶構造)

  • Choi, Q. Won;Koo, Chung-Hoe;Oh, Joon-Suk;Yoo, Chung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.174-178
    • /
    • 1965
  • p-Phenylenediamine dihydrobromide and p-phenylenediamine dihydrochloride are found to be isomorphous. p-Phenylenediamine dihydrobromide is triclinic with lattice parameters, $a=4.52{\pm}0.02{\AA}\;b=6.13{\pm}0.02{\AA},c=8.88{\pm}0.03{\AA},\;{\alpha}=111{\pm}1^{\circ},\;{\beta}=97{\pm}1^{\circ},\;{\gamma}=101{\pm}1^{\circ}.$ It belongs to space group $P\bar{1}$, and there is one molecule in the unit cell. The crystal structure is determined according to the method of Fourier synthesis from the electron density projections in three principal crystallographic axes. The crystal structure, thus determined is refined by the method of two-dimensional difference Fourier synthesis.

  • PDF

Wax Barrier Effect on Migration Behaviors of Antiozonants in NR Vulcanizates (천연고무 가류물에서 왁스막이 오존노화방지제의 이동에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • Waxes compounded into rubber migrate to the surface and form a protection film on the rubber surface. In general, antiozonants were used with wax to protect ozonation of rubber. Influence of wax barrier formed on the surface of a rubber vulcanizate on migration of antiozonants was studied using natural rubber (NR) vulcanizates containing various type waxes. IPPD (N-isopropyl-N'-phenyl-p-phenylenediamine), HPPD (N-l,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), SBPPD (N,N'-di(sec-butyl)-p-phenylenediamine), and DMPPD (N,N'-di(1,4-dimethylpentyl)-p-phenylenediamine) were employed as antiozonants. Migration experiments were performed at constant temperatures of 60 and $80^{\circ}C$ for 10, 20, 30 days using a convection oven. The migration rates of the antiozonants in the vulcanizate without wax are faster than those in the vulcanizates containing waxes. The antiozonants migrate slower in the vulcanizate containing wax with a high molecular weight distribution than in the vulcanizate with a low one. The migration rates of DMPPD and SBPPD are faster than those of HPPD and IPPD.

  • PDF

The Crystal Structure of p-Phenylenediamine Dihydrochloride (p-Phenylenediamine Dihydrochloride의 結晶構造)

  • Koo, Chung-Hoe;Min, Tae-Won;Sin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.142-147
    • /
    • 1965
  • The crystal structure of p-phenylenediamine dihydrochloride has been determined from X-ray oscillation and Weissenberg photographs. The crystal is triclinic, space group $C_i1-P{\bar\1},$ with cell dimensions $a = 4.38{\pm}0.02, b = 5.90{\pm}0.02, c = 8.76{\pm}0.03 {\AA}, {\alpha} = 110{\AA}1, {\beta} = 96{\pm}1\; and\; {\gamma} = 101{\pm}1^{\circ}.$ There is one molecule in the unit cell. The atomic coordinates were found by means of two-dimensional Fourier projection and ($F_o-F_c$) projection along the a, b and c axes. The structure of p-phenylenediamine dihydrochloride is discussed in relation to the structures of hexamethylenediamine dihydrochloride, hexamethylenediamine dihydroiodide and ethylenediamine dihydrochloride.

  • PDF

The Crystal and Molecular Structure of p-Phenylenediamine Dihydroperchlorate (p-Phenylenediamine Dihydroperchlorate의 결정 및 분자구조)

  • Ahn Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.320-329
    • /
    • 1977
  • p-Phenylenediamine dihydroperchlorate, $C_6H_4N_2H_4{\cdot}2HC1O_4$, crystallizes in space group $P\={1}$ with $a=4.79{\pm}0.02,\;b=9.03{\pm}0.02,\;c=7.12{\pm}0.03{\AA},\;{\alpha}=109.4{\pm}0.2,\;{\beta}=79.6{\pm}0.2,\;r=104.6{\pm}0.2^{\circ},\;Z=1$. The structure has been solved by the Patterson and Fourier methods. The refinement by block-diagonal least-squares cycles gives R = 0.13 for 387 observed reflexions collected on equi-inclination Weissenberg photographs with CuK${\alpha}$ radiation. There are two different types of five hydrogen bonds. The first type consists of one trifurcated N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.ce anaysis of our samples and investigated the variarions in the values of parameters obtained through fitting the theoretical impedance to the experimental impedance. The characters of the dielectric constant and the impedance showed abnormal variations for the 0.2 at K-doped NSBN ceramics, which we were able to interpret in terms of the variations in the number A-site vacancies with the K doping ratio. From these results, A-site vacancies are thought to be space charges that influence the ferroelectric properties of NSBN ceramics.

  • PDF

Mutagenicity of Phenylenediamines and their Derivatives(I) (Phenylenediamine과 그 유도체들의 돌연변이 유발성 제1보)

  • 변우현;백상기;이세영
    • Korean Journal of Microbiology
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 1975
  • Mutagenic action of p-phenylenediamine(PA) and nitro-p-phenylenediamine(NPA) has been investigated using auxotroph mutants of S.typhimurium LT-2 strain. PA, the major component of hair day in South and East Asia and South America, was proved as potent frams-shift mutagen only after activation system. On the contrary, NAP was directly mutagenic in this system.

  • PDF

Bioreduction of N,N-dimethyl-p-nitrosoaniline

  • Kim, Kyung-Soon;Shin, Hae-Yong
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Besides a variety of quinones, purified bovine liver quinone reductase catalyzed the reduction of N,N-p-nitrosoaniline to N,N-dimethyl-p-phenylenediamine. The formation of N,N-dimethyl-p-phenylenediamine was identified by TLC, GC, GC-MS and NMR. Quinone reductase can utilize either NADH or NADPH as a source of reducing equivalents. The apparent Km for 1,4-benzoquinone and N,N-dimethyl-p-nitrosoaniline was 1.64 mM and 0.22 mM, respectively The reduction of N,N-dimethyl-p-nitrosoaniline was almost entirely hampered by dicumarol or Cibacron blue 3GA, potent inhibitors of mammalian quinone reductase. During the bovine liver quinone reductase-catalyzed reduction of N,N-dimethyl-p-nitrosoaniline, benzoquinonediiminium ion was produced.

  • PDF

Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia (초임계 암모니아를 이용한 p-Phenylenediamine(PPD) 합성 및 특성연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.53-56
    • /
    • 2015
  • In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that $200^{\circ}C$ was the optimal temperature, because thermal degradation of PPD occurred above $250^{\circ}C$. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.

Isolation and Characterization of Peroxidase from Jerusalem Artichoke Tubers (돼지감자 Peroxidase의 분리와 특성)

  • Yoon, Eun-Seok;Kang, Su-Jung;Noh, Bong-Soo;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.565-570
    • /
    • 1993
  • Peroxidase from Jerusalem artichoke tubers, which might be related to browning reaction, was purified by ammonium sulfate precipitation, DEAE-cellulose and Sephacryl S-200 chromatography. The optimum pH of the purified peroxidase was 5.0 and relatively stable at pH $5.0{\sim}6.0$ using substrate of p-phenylenediamine and $H_2O_2$. D-values for thermal inactivation at 60, 70 and $80^{\circ}C$ were 86, 45 and 33 sec, respectively. Activation energy was 4,111 J/mole. The enzyme showed the most sensitive specificity of substrate for p-phenylenediamine. The compounds such as 1mM potassium cyanide, 10mM sodium diethyldithiocarbamate, L-ascorbic acid, sodium hydrosulfite and L-cysteine inhibited completely while 1mM of $Ca^{2+}\;and\;Cu^{2+}$ activated the purified peroxidase.

  • PDF

A Study on the Preparation of the Exfoliated Polyimide Nanocomposite and Its Characterization (박리형 폴리이미드 나노복합재료 제조와 특성에 관한 연구)

  • 유성구;박대연;김영식;이영철;서길수
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.375-380
    • /
    • 2002
  • Diamines (p-phenylenediamine , m-phenylenediamine , and n-hexamethylenediamine) were intercalated into sodium montmorillonite for the further reaction with the anhydride end groups of polyamic acid. The anhydride terminated polyamic acid was synthesized using a mole ratio of 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride = 1.50 : 1.53. The modified montmorillonite was reacted with polyamic acid terminated with anhydride group in N-methyl-2-pyrrolidone (polyamic acid/clay nanocomposite). After imidization, thin films of the polyimide/clay nanocomposite were prepared. From the results of XRD and TEM, we found that mono layered silicates were dispersed in polyimide matrix and those resultants were exfoliated nanocomposites. Mechanical properties of exfoliated polyimide nanocomposite were better than both those of pure polyimide and those of intercalated polyimide nanocomposite.

A Study on Contact Dermatitis-Causing Substances Concentration in Commercial Oxidative Hair-Coloring Products (유통 산화형 염모제의 접촉성피부염 유발물질 함량 연구)

  • Na, Young Ran;Koo, Hee Soo;Lee, Seung Ju;Kang, Jung Mi;Jin, Seong Hyeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.203-214
    • /
    • 2014
  • We measured the contact dermatitis-causing substances concentrations in 28 commercial oxidative hair-coloring products. This study was aimed to provide the fundamental data about oxidative hair-coloring products. We selected 10 oxidation dyes (p-phenylenediamine, toluene-2,5-diamine, m-phenylenediamine, nitro-p-phenylenediamine, p-aminophenol, m-aminophenol, o-aminophenol, p-methylaminophenol, N,N'-bis(2-hydroxyethyl)-p-phenylenediamine sulfate, 2-methyl-5-hydroxyethylaminophenol) and 4 heavy metal (nikel; Ni, chromium; Cr, cobalt; Co, copper; Cu) as contact dermatitis-causing substances. To identify 10 oxidation dyes, hexane-2% sodium sulfite was used for the rapid and simple extraction and ultra performance liquid chromatography (UPLC) analysis was used for simultaneous analysis in 12 minutes. 10 oxidative dyes were detected as indicated on the product packaging and each concentration was lower than prescribed upper concentration limit by pharmaceutical manufacturing standards. And we analysed inductively coupled plasma-optical emission spectrophotometer (ICP-OES) for content search of heavy metal after microwave digestion. The heavy metal average concentration in oxidative hair-coloring products was 0.572 ${\mu}g/g$ for Ni, 3.161 ${\mu}g/g$ for Cr, 2.029 ${\mu}g/g$ for Co, 0.420 ${\mu}g/g$ for Cu, respectively. The average of concentration in powder type (henna) was higher than those of other foam and cream type oxidative hair-coloring products as follows; 1.800 ${\mu}g/g$ for Ni, 10.127 ${\mu}g/g$ for Cr, 7.082 ${\mu}g/g$ for Co, 1.451 ${\mu}g/g$ for Cu. Hair coloring products were classified into the six colors - black, dark brown, brown, dark brown, light brown, red brown and analyzed. Brown color had the highest average concentration of Co and the others had the highest average concentration of Cr.