• Title/Summary/Keyword: pH neutralization process

Search Result 60, Processing Time 0.046 seconds

Nonlinear Chemical Plant Modeling using Support Vector Machines: pH Neutralization Process is Targeted (SVM을 이용한 비선형 화학공정 모델링: pH 중화공정에의 적용 예)

  • Kim, Dong-Won;Yoo, Ah-Rim;Yang, Dae-Ryook;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1178-1183
    • /
    • 2006
  • This paper is concerned with the modeling and identification of pH neutralization process as nonlinear chemical system. The pH control has been applied to various chemical processes such as wastewater treatment, chemical, and biochemical industries. But the control of the pH is very difficult due to its highly nonlinear nature which is the titration curve with the steepest slope at the neutralization point. We apply SVM which have become an increasingly popular tool for machine teaming tasks such as classification, regression or detection to model pH process which has strong nonlinearities. Linear and radial basis function kernels are employed and each result has been compared. So SVH based on kernel method have been found to work well. Simulations have shown that the SVM based on the kernel substitution including linear and radial basis function kernel provides a promising alternative to model strong nonlinearities of the pH neutralization but also to control the system.

Control of pH Neutralization Process using Simulation Based Dynamic Programming (ICCAS 2003)

  • Kim, Dong-Kyu;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2617-2622
    • /
    • 2003
  • The pH neutralization process has long been taken as a representative benchmark problem of nonlinear chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem grows, the dynamic programming approach is suffered from the curse of dimensionality. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis (1996). The NDP approach is to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used to find the optimal input movement in real time control. The approximation could be any type of function such as polynomials, neural networks and etc. In this study, an algorithm using NDP approach was applied to a pH neutralization process to investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic characteristics of this algorithm. As the global approximator, the neural network which requires training and k-nearest neighbor method which requires querying instead of training are investigated. The global approximator requires optimal control strategy. If the optimal control strategy is not available, suboptimal control strategy can be used even though the laborious Bellman iterations are necessary. For pH neutralization process it is rather easy to devise an optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration. Also, the effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the conventional PID control.

  • PDF

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Comparison of Titration Curve Estimation Methods for pH Neutralization Processes

  • Park, Ho-Cheol;Lee, Jie-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.1-124
    • /
    • 2001
  • Control of pH neutralization process plays a very important role in some chemical process. Because of their high nonlinearity, frequent disturbance, and time-varying characteristics, it is difficult to control and estimate pH processes. For the adaptive control of pH processes, a lot of researchers have made an efforts in the modeling and control of pH processes. It is very difficult to obtain information of influent stream such as concentrations and dissociation constants and the titration curve equation is very complex. Therefore, several simple models, which hate small number of unknown parameters and estimate the titration curve, have been available, These models were considered here and were transformed into forms that can applied the linear least square method.

  • PDF

Field-Scale Treatment of Acid Mine Drainage by Hybrid Electrolysis Process (전기분해 복합공정을 이용한 산성광산배수 실증처리 연구)

  • Sung, Il-Jong;Pak, Seung-Il;Yang, Jae-Kyu;Bae, Se-Dal;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • In this study, generic characteristics of the acid mine drainage (AMD), removal efficiency of iron, aluminium and manganese by chemical treatment, electrolysis and hybrid process using electrolysis after neutralization were evaluated. The pH of AMD was inversely proportional to the rainfall. In dry-season, the average pH of AMD was ranged from 4.5 to 5.5, showing slight variation. However, the pH of AMD was gradually decreased along with rainfall and dropped to 3.02 in September showing the greatest rainfall. Removal efficiency of heavy metals by chemical treatments using three different neutralizing agents or by electrolysis was low. However, a hybrid process performed with electrolysis after addition of neutralization shows higher removal capacity for heavy metal ions than neutralization-alone and electrolysisalone process.

Effect of Neutralization of Red Mud on Arsenic Stabilization in Soils (레드머드 중화 방법에 따른 토양 중 비소의 안정화 특성 평가)

  • Woo, Jio;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.65-73
    • /
    • 2021
  • Since the amount of red mud, generated from aluminum smelting process as a by-product, has increased worldwide, the recycle and metal resource recovery from the red mud is becoming more important. In this study, in order to recycle the red mud as a soil stabilizer to remediate arsenic contaminated soils, neutralization of red mud was investigated. Red mud was neutralized by washing with distilled water and NaCl, CaCl2, FeCl3, and HCl solutions and heating at 200-800℃, and arsenic stabilization characteristics in soils were evaluated with the neutralized red mud. Although washing with distilled water was not effective in neutralizing red mud, the application of the washed red mud to soils lowered the soil pH compared to the application of untreated red mud. Among NaCl, CaCl2, FeCl3, and HCl solutions, washing with FeCl3 showed the most effective in lowering pH of the red mud from pH 10.73 to pH 4.26. Application of the neutralized red mud in soils resulted in quite different arsenic stabilization efficiency depending on soil samples. In M1 soil, which showed relatively high arsenic stabilization efficiency by untreated red mud, the neutralization of red mud resulted in little effect on arsenic stabilization in soil. On the other hand, in M2 soil, which showed low arsenic stabilization efficiency by untreated red mud, the neutralization of red mud increased arsenic stabilization significantly. Soil characteristics such as clay minerals and pH buffering capacity seemed to affect reactions between red mud and soils, which resulted in different effects of the red mud application on soil pH and arsenic stabilization efficiencies.

고밀도 슬러지법(HSD)에 의한 광산배수처리시험

  • 정영욱;강상수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.192-195
    • /
    • 2003
  • The hight density sludge process (HDS) is a process that has been developed to achieve greatly increased sludge densities compared to those resulting from conventional pH modification systems. This study was carried out to apprehend variation of sludge properties and removal of metals during recycling of the sludge. The principal neutralization and settlement took place in neutralization beaker and mass cylinder. Sludge was recycled, as a volumetric ratios of 20%, 40% and 60%. The pH was controlled in neutralization tanks near 9.5. The average lime consumption rate was about 10g per L of AMD. The increment of sludge density was correlated with the volumetric ratios of recycled sludge.

  • PDF

Adsorption of Selenium in Industrial Wastewater Using Anion Exchange Resin and Activated Carbon (음이온교환수지와 활성탄을 이용한 산업 폐수 중 셀레늄의 흡착)

  • Han, Sang-Uk;Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1411-1416
    • /
    • 2009
  • Several adsorbents were tried to remove the selenium ions from industrial wastewater and the following ascending order of the adsorption performance for the selenium at pH 9 was observed: cation exchange resin < chelate resin < zeolite < brown marine algae < granular activated carbon < anion exchange resin. Initial concentration of selenium(146 mg/L) in industrial wastewater was reduced to 63 mg/L of selenium at pH 9 by neutralization process. The maximum uptake of Se calculated from the Langmuir isotherm with anion exchange resin was 0.091 mmol/g at pH 10 and that with granular activated carbon was 0.083 mmol/g at pH 6. The affinity coefficients of Se ion towards anion exchange resin and granular activated carbon were 3.263 L/mmol at pH 10 and 0.873 L/mmol at pH 6, respectively. The sorption performance of anion exchange resin at the low concentration of Se, namely, was much better than that of granular activated carbon. The Se ions from industrial wastewater throughout neutralization process and two steps of adsorption using anion exchange resin was removed to 97.7%.

Estimation of Alkali Overdosing in a Lime Neutralization Process for Acid Mine Drainage

  • Cheong, Young-Wook;Cho, Dong-Wan;Lee, Jin-Soo;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.109-112
    • /
    • 2022
  • Lime has been used for the neutralization of acidic waste because it is cheap and available in large quantities. The resulting sludge often contains a considerable amount of unreacted lime due to alkali overdosing, even during automatic neutralization processes, which mainly arises from the poor solubility of lime. The sludge cake from lime neutralization of Ilkwang Mine also contained high percentages of calcium and magnesium. The elemental content of the sludge cake was compared with those obtained from a simulation of the lime neutralization facility installed at Ilkwang Mine. A Goldsim® model estimated the degree of lime overdosing to be 19.1% based on the fractions of ferrous oxide. The analysis suggests that resolubilization of aluminum hydroxide could occur in the settling basin, in which pH exceeded 10 due to the continued dissolution of the overdosed lime. The present study demonstrated that chemical analysis of sludge combined with process simulation could provide a reasonable estimate of mass balance and chemistry in a neutralization facility for acid mine drainage.