• Title/Summary/Keyword: pad conditioning

Search Result 63, Processing Time 0.024 seconds

Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity (패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구)

  • Park, Byeonghun;Park, Boumyoung;Jeon, Unchan;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

Utilizing Advanced Pad Conditioning and Pad Motion in WCMP

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.171-175
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics and metal, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter level dielectrics and metal. Especially, defects like (micro-scratch) lead to severe circuit failure, and affects yield. Current conditioning method - bladder type, orbital pad motion- usually provides unsuitable pad profile during ex-situ conditioning near the end of pad life. Since much of the pad wear occurs by the mechanism of bladder type conditioning and its orbital motion without rotation, we need to implement new ex-situ conditioner which can prevent abnormal regional force on pad caused by bladder-type and also need to rotate the pad during conditioning. Another important study of ADPC is related to the orbital scratch of which source is assumed as diamond grit dropped from the strip during ex-situ conditioning. Scratch from diamond grit damaged wafer severely so usually scraped. Figure 1 shows the typical shape of scratch damaged from diamond. e suspected that intensive forces to the edge area of bladder type stripper accelerated the drop of Diamond grit during conditioning. so new designed Flat stripper was introduced.

  • PDF

CMP Properties of Oxide Film with Various Pad Conditioning Temperatures (CMP 패드 컨디셔닝 온도에 따른 산화막의 연마특성)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.297-302
    • /
    • 2005
  • Chemical mechanical polishing(CMP) performances can be optimized by several process parameters such as equipment and consumables (pad, backing film and slurry). Pad properties are important in determining removal rate and planarization ability of a CMP process. It is investigated the performance of oxide CMP process using commercial silica slurry after the pad conditioning temperature was varied. Conditioning process with the high temperature made the slurry be unrestricted to flow and be hold, which made the removal rate of oxide film increase. The pad became softer and flexible as the conditioning temperature increases. Then the softer pad provided the better surface planarity of oxide film without defect.

Development of a Pad Conditioning Method for ILD CMP using a High Pressure Micro Jet System

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Doi, Toshiro
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • The goal of this study is to determine if High Pressure Micro Jet (HPMJ) conditioning can be used as a substitute for, or in conjunction with, conventional diamond pad conditioning. Five conditioning methods were studied during which 50 ILD wafers were polished successively in a 100-mm scaled polisher and removal rate (RR), coefficient of friction (COF), pad flattening ratio (PFR) and scanning electron microscopy (SEM) measurements were obtained. Results indicated that PFR increased rapidly, and COF and removal rate decreased significantly, when conditioning was not employed. With diamond conditioning, both removal rate and COF were stable from wafer to wafer, and low PFR values were observed. SEM images indicated that clean grooves could be achieved by HPMJ pad conditioning, suggesting that HPMJ may have the potential to reduce micro scratches and defects caused by slurry abrasive particle residues inside grooves. Regardless of different pad conditioning methods, a linear correlation was observed between temperature, COF and removal rate, while an inverse relationship was seen between COF and PFR.

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Nonuniformity of Conditioning Density According to CMP Conditioning System Design Variables Using Artificial Neural Network (인공신경망을 활용한 CMP 컨디셔닝 시스템 설계 변수에 따른 컨디셔닝 밀도의 불균일도 분석)

  • Park, Byeonghun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.152-161
    • /
    • 2022
  • Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.

Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control (CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향)

  • Lee, Donghwan;Lee, Kihun;Jeong, Seonho;Kim, Hyungjae;Cho, Hanchul;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.

Utilizing Advanced Pad Conditioning and Pad Motion in WCMP

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.171-175
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics and metal, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter level dielectrics and metal. Especially, defects like (micro-scratch) lead to severe circuit failure, and affects yield. Current conditioning method - bladder type, orbital pad motion - usually provides unsuitable pad profile during ex-situ conditioning near the end of pad life. Since much of the pad wear occurs by the mechanism of bladder tripe conditioning and its orbital motion without rotation, we need to implement new ex-situ conditioner which can prevent abnormal regional force on pad caused by bladder-type and also need to rotate the pad during conditioning. Another important study of ADPC is related to the orbital scratch of which source is assumed as diamond grit dropped from the strip during ex-situ conditioning. Scratch from diamond grit damaged wafer severely so usual1y scraped. Figure 1 shows the typical shape of scratch damaged from diamond. We suspected that intensive forces to the edge area of bladder type stripper accelerated the drop of Diamond grit during conditioning, so new designed Flat stripper was introduced.

  • PDF

Tungsten CMP using Fixed Abrasive Pad with Self-Conditioning (Self-Conditioning을 이용한 고정입자패드의 텅스텐 CMP)

  • Park, Boum-Young;Kim, Ho-Youn;Seo, Heon-Deok;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1296-1301
    • /
    • 2003
  • The chemical mechanical polishing(CMP) is necessarily applied to manufacturing the dielectric layer and metal line in the semiconductor device. The conditioning of polishing pad in CMP process additionally operates for maintaining the removal rate, within wafer non-uniformity, and wafer to wafer non-uniformity. But the fixed abrasive pad(FAP) using the hydrophilic polymer with abrasive that has the swelling characteristic by water owns the self-conditioning advantage as compared with the general CMP. FAP also takes advantage of planarity, resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration. This paper introduces the manufacturing technique of FAP. And the tungsten CMP using FAP achieved the good conclusion in point of the removal rate, non-uniformity, surface roughness, material selectivity, micro-scratch free contemporary with the pad life-time.

  • PDF

Electrical and Optical Properties of ITO Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝 온도 변화가 ITO 박막의 전기적.광학적 특성에 미치는 영향)

  • Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.352-353
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) immediately after pad conditioning with the various conditioning temperatures by control of do-ionized water (DIW). Light transparent efficiency of ITO thin film was improved after CMP process after pad conditioning at the high temperature because the surface morphology was smoother by soften polishing pad and decreased particle size.

  • PDF