• Title/Summary/Keyword: paramagnetic impurity ion

Search Result 7, Processing Time 0.02 seconds

Temperature Dependence of Mn2+ Paramagnetic Ion in a Stoichiometric LiNbO3 Single Crystal

  • Yeom, Tae Ho;Lee, Soo Hyung
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.221-224
    • /
    • 2013
  • Electron paramagnetic resonance (EPR) spectra of $Mn^{2+}$ impurity ion in Stoichiometric $LiNbO_3$ single crystal (SLN) was investigated with an X-band EPR spectrometer in the temperature range of 3 K~296 K. The intensity of EPR spectrum of $Mn^{2+}$ ion was increased to 20 K and decreased again below 20 K as the temperature decreases. The zero-field splitting parameter D decreased as the temperature increases. It was suggested that $Mn^{2+}$ ion substitute for $Nb^{5+}$ ion instead of $Li^+$ ion. No changes for hyperfine interaction of $Mn^{2+}$ ion was obtained in the temperature range of 3 K~296 K.

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.

Thermal Effects on Stoichiometric LiTaO3 Single Crystal (정비조성 LiTaO3 단결정에 대한 열처리 효과)

  • Yeom, T.H.;Lee, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.177-180
    • /
    • 2005
  • Ferroelectric $LiTaO_3$ single crystals, grown by the Czochralski method, were thermally treated at temperature $1000^{\circ}C\;and\;1100^{\circ}C$. Electron paramagnetic resonance (EPR) study of stoichiometric $LiTaO_3$ and thermally treated $LiTaO_3$ crystals has been investigated by employing an X-band spectrometer. From the $Fe^{3+}$ EPR spectra, it turned out that there is no change of site location and local site symmetry around $Fe^{3+}$ impurity ion between stoichiometric and thermally treated $LiTaO_3$ single crystals. We confirmed that the ionic state of $Fe^{3+}$ ion changed after thermal treatment. The EPR parameters of $Fe^{3+}$ ion in $LiTaO_3$ single crystals are determined with effective spin Hamiltonian.

Activation Energy of 69Ga, 71Ga, and 75As Nuclei in GaAs:Mn2+ Single Crystal

  • Yeom, Tae Ho;Lim, Ae Ran
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.116-120
    • /
    • 2014
  • The spin-lattice relaxation time, $T_1$, for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei in GaAs:$Mn^{2+}$ single crystals was measured as a function of temperature. The values of $T_1$ for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei were found to decrease with increasing temperature. The $T_1$ values in GaAs:$Mn^{2+}$ crystal are similar to those in pure GaAs crystal. The calculated activation energies for the $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei are 4.34, 4.07, and 3.99 kJ/mol. It turns out that the paramagnetic impurity effect of $Mn^{2+}$ ion doped in GaAs single crystal was not strong on the spin-lattice relaxation time.

Electron Magnetic Resonance of Eu2+ in SrCl2:Eu Single Crystal

  • Lee, Soo Hyung;Yeom, Tae Ho;Kim, Sung-Hwan
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.251-254
    • /
    • 2012
  • The electron paramagnetic resonance (EPR) of the $Eu^{2+}$ ion in $SrCl_2$:Eu single crystal has been investigated using an X-band spectrometer. The angular dependence of magnetic resonance positions for the $Eu^{2+}$ impurity ion in the crystallographic aa-plane is analyzed with effective spin-Hamiltonian. The EPR spectra of the isolated $Eu^{2+}$ center merged to each other. The hyperfine splitting of the isolated $Eu^{2+}$ center due to the $^{151}Eu$ nucleus is approximately 35 G. Three kinds of $Eu^{2+}$ centers except the isolated $Eu^{2+}$ center, $Eu^{2+}$ pairs, $Eu^{2+}$ triples, and other $Eu^{2+}$ clusters, are split from the fitting of the integrated experimental spectrum with the Gaussian curve. The calculated spectroscopic splitting parameters of the $Eu^{2+}$ pairs, $Eu^{2+}$ triples, and other $Eu^{2+}$ clusters in $SrCl_2$:Eu crystal are $g_1$ = 2.06, $g_2$ = 1.94, and $g_3$ = 1.93, respectively.

Electron Paramagnetic Resonance Study of impurity Fe3+ ion in LiTaO3 single crystal (Fe3+ 불순물이 첨가된 LiTaO3 단결정에서의 전자 상자성 공명 연구)

  • Min, S.G.;Yeon, T.H.;Lee, S.H.;Lee, M.K.;Shin, H.K.;Yu, Y.M.;Kim, T.H.;Yu, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.171-175
    • /
    • 2003
  • Electron paramagnetic resonance (EPR) of Fe$^{3+}$ in LiTaO$_3$ single crystal, grown by Czochralski method, has been studied by employing an X-band spectrometer. Resonance spectra of Fe$^{3+}$ ion on the crystallographic principal axes were obtained with 9.447 ㎓ at room temperature. The spectroscopic splitting parameter g and zero-field splitting (ZFS) parameter D (= 3 B$_{2}$sup 0/) are calculated with effective spin Hamiltonian. Fe$^{3+}$ center in stoichometric single crystal turns out to be different with that in congruent single crystal reported previously. From the analysis of temperature dependence of resonance fields for Fe$^{3+}$ ion, there is no any phase transition at the temperature range (from -160 $^{\circ}C$ to 20 $^{\circ}C$).

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal (PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.