• 제목/요약/키워드: parametric programming approach

검색결과 15건 처리시간 0.03초

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

제약을 갖는 최적화문제에 대한 파라메트릭 접근법과 구조문제의 최적화에 대한 응용 (A Method using Parametric Approach for Constrained Optimization and its Application to a System of Structural Optimization Problems)

  • 양용준;김원석
    • 한국경영과학회지
    • /
    • 제15권1호
    • /
    • pp.73-82
    • /
    • 1990
  • This paper describes two algorithms to Nonlinear programming problems with equality constraints and with equality and inequality constraints. The first method treats nonlinear programming problems with equality constraints. Utilizing the nonlinear programming problems with equality constraints. Utilizing the nonlinear parametric programming technique, the method solves the problem by imbedding it into a suitable one-parameter family of problems. The second method is to solve a nonlinear programming problem with equality and inequality constraints, by minimizing a square sum of nonlinear functions which is derived from the Kuhn-Tucker condition.

  • PDF

A control allocation sterategy based on multi-parametric quadratic programming algorithm

  • Jeong, Tae-Yeong;Ji, Sang-Won;Kim, Young-Bok
    • 수산해양기술연구
    • /
    • 제49권2호
    • /
    • pp.153-160
    • /
    • 2013
  • Control allocation is an important part of a system. It implements the function that map the desired command forces from the controller into the commands of the different actuators. In this paper, the authors present an approach for solving constrained control allocation problem in vessel system by using multi-parametric quadratic programming (mp-QP) algorithm. The goal of mp-QP algorithm applied in this study is to compute a solution to minimize a quadratic performance index subject to linear equality and inequality constraints. The solution can be pre-computed off-line in the explicit form of a piecewise linear (PWL) function of the generalized forces and constrains. The efficiency of mp-QP approach is evaluated through a dynamic positioning simulation for a vessel by using four tugboats with constraints about limited pushing forces and found to work well.

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming

  • Golafshani, Emadaldin Mohammadi;Rahai, Alireza;Kebria, Seyedeh Somayeh Hosseini
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents the application of multi-gene genetic programming (MGP) technique for modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264 splice beam tests from different technical papers were used for training, validating and testing the model. Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse reinforcement index. The results show that the proposed MGP model can be alternative approach for predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed model was compared with the building codes' empirical equations for a complete comparison. The study concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the existing building codes' equations. Using the proposed MGP model and building codes' equations, a parametric study was also conducted to investigate the trend of the input variables on the bond strength of ribbed steel bars in concrete.

A data mining approach to compressive strength of CFRP-confined concrete cylinders

  • Mousavi, S.M.;Alavi, A.H.;Gandomi, A.H.;Esmaeili, M. Arab;Gandomi, M.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.759-783
    • /
    • 2010
  • In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete strength and ultimate confinement pressure are included in the second set. The models are developed based on the experimental results obtained from the literature. To verify the applicability of the proposed models, they are employed to estimate the compressive strength of parts of test results that were not included in the modeling process. A sensitivity analysis is carried out to determine the contributions of the parameters affecting the compressive strength. For more verification, a parametric study is carried out and the trends of the results are confirmed via some previous studies. The GP/SA and MEP models are able to predict the ultimate compressive strength with an acceptable level of accuracy. The proposed models perform superior than several CFRP confinement models found in the literature. The derived models are particularly valuable for pre-design purposes.

근해어업경영을 위한 기술효율성분석 (An Analysis of Technical Efficiency for Managing Off-Shore Fishery in Korea)

  • 최종두
    • Ocean and Polar Research
    • /
    • 제30권4호
    • /
    • pp.445-451
    • /
    • 2008
  • This paper examines measures of technical efficiency in off-shore fishery based on a frontier production function model of the Cobb-Douglas type. Technical efficiency ranges between 57.13 and 98.62 percent. The results suggest that the highest TE in the industry is the trawl. Also, this analysis shows that Busan's Danish seine fishery has a maximum TE. Angling in Gangwon has a minimum TE. Empirical measures of technical efficiency in this study can be useful in analyzing the potential effects of policies designed to deal with the current fishery industry.

구조적 접근방식의 온라인 자동 서명 겁증 기법 (A Structural Approach to On-line Signature Verification)

  • 김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.385-396
    • /
    • 2005
  • 이 논문에서는 온라인 서명 검증에 대한 새로운 접근 방법으로, 서명을 필기의 기본 구성 요소들로 표현하는 구조적인 접근 방법을 제시한다. 속력의 국부 극소점을 분할점으로 하여 얻어지는 부분을 원시 패턴으로 정의하였고, 서브패턴으로서 방향 변화에 의해 얻어지는 단순 회전형 성분, 첨형 성분, 종형 성분의 세 가지 종류를 정의하여 서명을 구조적으로 표현하였다. 그리고 서브패턴을 기본 단위로 한 동적 계획정합 알고리듬을 제시하였다. 또한, 학습 샘플로부터 국부적인 부분에 대한 변화도와 복잡도를 추출하여 참조 패턴의 학습과 진위 판단 임계치를 설정하였다. 실험을 통하여, 함수적 접근과 매개변수적 접근 그리고 제안된 구조적 접근 방법을 동일 조건에서 검증률, 처리시간, 메모리의 측면에서 비교하였다. 제안된 방법에서는, 서명의 국부적인 가중치를 적용하고 복잡도를 판단임계치의 설정에 사용함으로써 평균 오류율이 14.2%에서 4.05%로 검증률이 크게 향상되었다. 또한, 시간과 메모리의 측면에서 함수적 접근 방법에 비해 효과적이면서도 함수적 접근 방법의 최고 성능에 근접한 검증률을 얻을 수 있었다.

  • PDF