• Title/Summary/Keyword: pasting property

Search Result 69, Processing Time 0.027 seconds

Comparison of Physicochemical Properties and Cooking Quality of Korean Organic Rice Varieties (국내산 유기재배 쌀의 이화학적 특성과 취반특성 비교)

  • Wi, Eunui;Park, Jjhye;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.785-794
    • /
    • 2013
  • To satisfy the consumer's interest with safety and high quality of staple foods, the physicochemical properties and cooking quality of organic rice using hairy vetch in Korea were compared. Two Korean varieties, Hopyeong and Ilmi, two Japanese varieties, Koshihikari and Hedomebore, and newly developed in Jeonnam, Mipum which cultivated in the same region and conditions were used. Physicochemical properties and cooking quality were investigated. All samples were japonica type short grains and their length/width ranged 1.74-1.84. The protein, ash, and crude lipid contents were significantly different with varieties and the protein content of Korean rice was lower than that of Japanese rice, especially, that of Hopyeong was the lowest. Amylose content and initial pasting temperature were lower in Hopyeong and Japanese rice, but peak viscosities showed reverse trends. Swelling power at $80^{\circ}C$ showed higher in Hopyeong and Koshihikari. Color values, L, a and b were significant difference with varieties and color differences of Hopyeong and Huitomebore were lower than those of others. Texture properties, hardness and adhesiveness of Hopyeong cooked rice showed the lowest values, but adhesiveness of Japanese cooked rice exhibited the highest value. On sensory evaluation of cooked rice, glossiness of Koshihikari, intactness of Koshihikari, Huitomebore, and Hopyeong, stickiness of Koshihikari and Hopyeong showed higher values (p<0.05). The overall quality score of organic cooked rices decreased as following order; Koshihikari> Hopyeong> Huitomebore> Mipum> Ilmi.

Physicochemical Properties of Acetylated Rice Starch as Affected by Degree of Substitution (치환도가 초산 쌀전분의 이화학적 특성에 미치는 영향)

  • Shon, Kwang-Joon;Chung, Man-Gon;Kim, Hyung-Il;Yoo, Hyoung-Seung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.487-492
    • /
    • 2006
  • Acetylated rice starches were prepared by reaction of rice starch with acetic anhydride, and their physicochemical properties as a function of degree of substitution (DS) were evaluated. The percentage of acetyl group and DS were $0{\sim}2.71%\;and\;0{\sim}0.104$, respectively. DS increased with increase in acetic anhydride content. DS increased swelling power and solubility of rice starch. Light transmittance (%) values of acetylated rice starches were much higher than that of native rice starch and increased with increase in DS. Rapid Visco Analyzer initial pasting temperature of acetylated rice starches decreased with increase in DS, while peak viscosity and breakdown values increased. Starch gets showed a significant decrease in syneresis (%) with the increase in DS.

The Effect of the Additives on the Properties of Pasting (첨가제가 배접용 풀의 특성에 미치는 영향: 콩, 석회, 황랍, 백반 첨가제를 중심으로)

  • Baek, Young-Mee;Cho, Kyoung-Sil;Lee, Young-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2011
  • Traditional paste materials and additives for investigation were selected through careful literature survey. We used the immersed glutinous rice flour, soybean as a traditional paste materials and a yellow wax, alum, and lime as additives. The effect of additives on viscosity, pH, adhesive strength, flexibility, antibacterial activities, mildew resistance, and conservation properties were examined. It was found that there was a relationship between the properties(viscosity, pH, and adhesive strength) and the characteristics of additives. Alum increased flexibilty but decreased viscosity, adhesive strength, and pH. Yellow wax deceased flexibilty, viscosity, adhesive strength, and pH. Lime increased flexibilty, viscosity, adhesive strength, and pH. The conservation properties increased by adding all additive. The present work was therefore carried out with the objective of offering the base datum for keeping traditional papers and textiles using traditional paste.

Physicochemical Characteristics of Acid Thinned and High Pressure Treated Waxy Rice Starch for Yugwa (Korean Rice Snack) Production

  • Cha, Jae-Yoon;Choi, Ae-Jin;Chun, Bo-Youn;Kim, Min-Ji;Chun, Hyang-Sook;Kim, Chul-Jin;Cho, Yong-Jin;Kim, Chong-Tai
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.943-947
    • /
    • 2007
  • The acid modification of waxy rice starch was conducted to improve the yugwa production process. The intrinsic viscosity, paste viscosity, and differential scanning calorimetry characteristics of acid modified starch were measured, and bandaegi and yugwa prepared from acid modified starch were evaluated. The intrinsic viscosities of acid thinned starches were 1.48, 1.27, 1.15, and 0.91 mL/g after reaction times of 1, 2, 3, and 4 hr, respectively. The gelatinization enthalpy was reduced from 16.3 J/g in native starch to 15.8, 15.3, 14.7, and 14.5 J/g in acid thinned starches as the time of acid thinning increased. The peak viscosity and final viscosity decreased with increasing the time of acid thinning, but the pasting temperature was slightly increased in acid thinned starches. The hardness of bandaegi from acid thinned starches under high pressure greatly decreased relative to the control, typical yugwa. Yugwa from acid thinned starch under high pressure maintained a homogeneous structure containing tiny and uniform cells similar to that of native waxy rice starch used for typical yugwa. Acid thinning under high pressure appears to be a good alternative to the existing steeping process for better yugwa quality.

Gelatinization Properties and Molecular Structure of Waxy Rice Starches Isolated from Korean Japonica and Indica Cultivars (국내산 자포니카와 인디카 품종 찹쌀전분의 호화특성과 분자구조)

  • Oh, Song Min;No, Jun Hee;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.716-725
    • /
    • 2014
  • Gelatinization properties and the molecular structure of Korean waxy rice starchesisolated from two japonica types, Sinseonchal, and Dongjinchal, as well as an indica type, Hangangchal 1 were investigated. Sinseonchal is preferred cultivar for making Korean traditional rice cakes and cookies. Sinseonchal starch was the highest in crude protein, amylopectin, damaged starch contents, and water binding capacity among the cultivars tested. The initial pasting temperature ($72.75^{\circ}C$), peak (360.54 RVU), breakdown (162.21 RVU) and setback (30.83 RVU) viscosities of Sinseonchal had the highest values (p<0.05). Onset and peak temperatures by differential scanning calorimeter were also the highest in Sinseonchal. The molecular weight of Sinseonchal amylopectin was 5.46 107higher than those of the other cultivars, but its peak height and area were the lowest among them. The amylopectin peak by HPSEC showed a shoulder in the lower molecular weight portion and its relative area decreased in the following order; Sinseonchal > Dongjinchal > Hangangchal 1. On the branch chain length distribution of amylopectin, the proportion of DP13-24 and DP25-36 showed reverse trends, with higher japonica type amylopectin in DP13-24.

Quality Characteristics of Mungbean Starch Gels with Various Hydrocolloids (친수성 다당류 첨가가 녹두전분 겔의 품질 특성에 미치는 영향)

  • Choi, Eun-Jung;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.5
    • /
    • pp.540-551
    • /
    • 2009
  • This study was conducted to investigate the quality characteristics of mungbean starch gels containing various hydrocolloids (carrageenan, locust bean gum and xanthan gum) during room temperature storage ($25^{\circ}C$ for 24, 48 and 72 hours). Carrageenan and xanthan gum reduced the pasting viscosity of mungbean starch, whereas the locust bean gum increased the viscosity. The melting characteristics, as assessed by DSC, showed that carrageenan and xanthan gum delayed gelatinization of mungbean starch and the locust bean gum had no effect on this property. The lightness (L) of the gels with the locust bean gum was similar to that without the additive during storage, whereas that with carrageenan and xanthan gum was higher than that without the additive. Hardness, chewiness and gumminess of the gels with the locust bean gum was higher than that without the additive during storage, whereas that with carrageenan and xanthan gum was lower than that without the additive. The rupture stress, rupture strain and rupture energy of the gels with carrageenan and xanthan gum was lower than that without the additive during storage, whereas that with the locust bean gum was similar to that without the additive. In the sensory evaluation, springiness and cohesiveness of the gels with carrageenan and xanthan gum were lower than those without the additive, whereas springiness, brittleness and hardness of the gels with the locust bean gum were higher than those without the additive. In addition, the overall acceptability of the gels with the locust bean gum improved. The above results showed that carrageenan and xanthan gum lowered the quality characteristics of the mungbean starch gel and the locust bean gum improved them. Thus, the addition of 0.5% locust bean gum is an appropriate method for improving the quality characteristics of mungbean starch gel.

Effects of storage temperatures on the physicochemical properties of milled rice (백미의 저장온도에 따른 이화학적 성질의 변화)

  • Kim, Sung-Kon;Cho, Eun-Ja
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.146-153
    • /
    • 1993
  • The changes in water uptake rate, cooking property, color of rice grain, gelatinization property of milled rice during storage were studied. The water uptake rate constant of milled rice during storage at $4{\sim}30^{\circ}C$ for 3 months decreased, which was more pronounced at elevated storage temperatures. The activation energy of water uptake was different below and above $25^{\circ}C$ of storage temperature. The activation energy after storage for 3 months below and above $25^{\circ}C$ was 608 and 1269 cal/mole, respectively. The rice grain became harder and the cooking time was prolonged by $3{\sim}8$ minutes upon storage. The cooking rate constant was linearly decreased as a function of storage time. The activation energy of cooking after 1 month of storage was 235 cal/mole, which was increased by 1.7 times after storage of 1.5 months and thereafter by 1.2 times with the increase of 0.5 month. There were no significant changes in color of milled rice grains during storage at $4^{\circ}C$, but the increase of b value was observed at higher temperatures. The Initial pasting temperature of rice flour remained essentially unchanged during storage, but the peak viscosity consistently increased with the increase of storage time and temperature. The gelatinization temperature of rice flour by differential scanning calorimetry was not changed but enthalpy of gelatinization was decreased during storage.

  • PDF

Changes of Physicochemical Properties and Fatty acid Compositions of Rough Rice Stored at Different Storage Temperatures and Periods (벼 정조저장 중 저장온도 및 저장기간에 따른 쌀의 이화학적 특성 및 지방산 조성의 변화)

  • Kim, Jeong-Ju;Baek, Man-Kee;Kim, Kwang-Su;Yoon, Mi-Ra;Kim, Gi-Young;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.413-426
    • /
    • 2014
  • This study was conducted to investigate changes of physicochemical properties and fatty acid compositions of rough rice stored at different storage temperatures and periods. So we analyzed texture, alkali digestion value (ADV), toyo glossiness value, pasting properties, fat acidity and fatty acid compositions of five rice varieties every 4 month on the condition of which rough rice had been stored at different temperatures (ambient and low temperature condition at $15^{\circ}C$) for 2 years. Hardness of cooked rice was increased by storage periods and cohesiveness of cooked rice was not considerably different among varieties according to storage temperatures and periods. ADV was significantly different among varieties and storage periods but not different with storage temperatures. Toyo glossiness value of cooked rice was continuously decreased from 4 months after storage regardless to storage temperature. The pasting properties were considerably affected by storage temperatures and periods of rough rice. Increase in peak viscosity, final viscosity and breakdown was observed but setback was decreased by storage periods. Fat acidity of brown rice was much higher than that of milled rice during storage of rough rice and tend to increase by storage period. Oleic acid among fatty acids of brown rice except Sindongin and Hitomebore tended to be decreased by storage periods and linoleic acid among fatty acids of brown rice of Hopum was decreased by storage periods. The contents of linoleinic acid and stearic acid among fatty acids of milled rice were comparatively decreased from 4 months after storage, whereas the content of palmitic acid tended to be increased by storage periods.

Physicochemical Properties of Commercial Sweet Potato Starches (시판 고구마전분의 이화학적 특성)

  • Baek, Man-Hee;Cha, Dong-Su;Park, Hyun-Jin;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.755-762
    • /
    • 2000
  • Physicochemical properties of commercial sweet potato starches manufactured by 7 different companies were investigated in comparison with corn and potato starches. Crude ash and protein content varied from 0.36 to 1.02%, and from 0.04 to 0.14% based on dry weight, respectively. The protein contents were relatively smaller than that of corn or potato starch. But whiteness of the sweet potato starches was less than that of corn or potato starch. Mean diameter of the sweet potato starch granules varied from 14.23 to $21.08\;{\mu}m$ depending on the company and all sweet potato starches showed bimodal size distributions. Pasting viscosity measured by Rapid Viscoanalyzer(RVA) also showed variations among the starches of different companies. The starch from D company in Korea had the lowest pasting temperature$(74.00^{\circ}C)$ whereas the starch from a phillippine company(P) did the highest one$(80.35^{\circ}C)$. The peak viscosity of sweet potato starches was higher than that of corn starch but lower than that of potato starch. The D company starch also showed the highest peak viscosity(2283 cp) among the starches tested. Paste breakdown by hot shearing ranged from 524 cp (S company) to 1279 cp (HL company). Textural properties of the starch gels appeared significantly different among the starches of different manufacturers. The greatest hardness of the gel was $137.90\;g_{f}$ at 1 day storage whereas the lowest value was $31.53\;g_{f}$. Except the starches from 2 companies (P and S), the sweet potato starches formed very soft and weak gels. P or S company starches formed the gels similar to potato starch. Syneresis by freeze-thawing treatments appeared less for sweet potato starch gels than that for corn starch gels, but greater than that for potato starch gel. The overall properties of the sweet potato starches varied by the manufacturing companies, and ranged between those of corn and potato starches.

  • PDF

Comparison of Physico-Chemical Properties between Waxy and Non-waxy Wheat Grains (찰성밀과 보통밀간의 이화학적 특성 비교)

  • Lee Choon-Ki;Nam Jung-Hyun;Kang Moon-Seok;Ku Bon-Chol;Park Kwang-Keun;Kim Jae-Cheol;Son Young-Koo;Park Jeong-Hwa;Lee Yeong-Ho;Son Jong-Rok;Min Young-Kyoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.419-427
    • /
    • 2005
  • For the purpose to verify the physico­chemical properties of Korean waxy wheat, comparative analyses between waxy wheat lines and their respective maternal parents were performed on mixing and pasting properties, and flour particle sizes. The particle sizes of waxy wheat flour were significantly larger than those of their parents when milled in a same condition. Although the protein contents of flour in waxy wheat lines tested were high as much as those of bread wheat, the quality parameters showed lower baking uses based on sedimentation volumes and mixing characteristics. Waxy flour required more water than non-waxy flour to obtain the proper mixogram. Waxy wheat flour showed more or less higher onset pasting temperatures and much higher breakdown viscosities than their respective parent flour in the Rapid Viscograph test. Moreover, peak viscosity temperatures and final viscosities were dramatically reduced in waxy wheat lines by showing $79.4 - 81.7^{\circ}C$ and 101 ­116.9 RVU, respectively, compared to their parents in that the temperatures above $95^{\circ}C$ and the viscosity ranges of 148 -171.8 RVU.