• Title/Summary/Keyword: pearl pigment

Search Result 20, Processing Time 0.031 seconds

The Development of Optically Functioned Metal Pearl Pigment Processed With Nano-Size by DC, RF Magnetron Sputtering process (DC, RF Magnetron Sputtering 방법을 이용한 나노크기의 금속계 광기능성 진주안료 개발)

  • Jeong, Jae-Il;Lee, Jeong-Hun;Jang, Gun-Eik;Cho, Seong-Yoon;Jang, Gil-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.299-300
    • /
    • 2005
  • 본 연구에서는 $SiO_2$ 판상체 위에 저굴절 및 고굴절 금속 산화물을 다층 교차 증착하여 Pearl Pigment를 sputtering 공법을 이용하여 증착하였다. Pearl Pigment는 Essential Macleod program 을 이용한 색상과 증착된 pigment의 색상이 파장에 따라 blue, violet, pink, red, orange, yellow, green 등(Wave length : 450$\sim$730 nm)으로 동일하게 나타났고, 기존의 제품에 비해 색상효과가 뛰어나고, 표면 morphology가 우수하였다. 주사전자현미경(SEM)으로 막 두께, 표면 조직 및 입자 크기를 측정하였고, 스펙트로미터를 사용하여 각각의 파장을 분석하였으며 EDS, XRD를 이용하여 정성 및 정량 분석을 하였다.

  • PDF

Optical Properties of Pearl Pigment Film Depending on Processing Variable (공정변수에 따른 진주안료막의 광 특성)

  • Jeong, Jae-Il;Lee, Jeong-Hun;Jang, Gun-Eik;Cho, Seong-Yoon;Jang, Gil-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.491-492
    • /
    • 2005
  • 본 연구에서는 $Al_2O_3$, $SiO_2$ 판상체 위에 저굴절 및 고굴절 금속 산화물을 다층 교차 증착하여 Pearl Pigment를 sputtering 공법을 이용하여 증착하였다. Pearl Pigment는 Essential Macleod program 을 이용한 색상과 증착된 pigment의 색상이 파장에 따라 blue, violet, pink, red, orange, yellow, green 등(Wave length 450~623 nm)으로 동일하게 나타났고, 기존의 제품에 비해 색상효과기 뛰어나고, 표면 morphology가 우수하였다. 광학 현미경 및 주사전자현미경(SEM)으로 막 두께, 표면 조직 및 입자 크기를 측정하였고, EDS, XRD를 이용하여 정성 및 정량 분석을 하였다.

  • PDF

Properties of Bismuthoxynitrate as a Synthetic Pearl Pigment (인공 진주 안료로서 염기성 질산비스무트에 관한 연구)

  • 이계주;유병설
    • YAKHAK HOEJI
    • /
    • v.22 no.1
    • /
    • pp.22-26
    • /
    • 1978
  • The purposes of this investigation were to study the characteristic properties of bismuthoxynitrate formed by hydrolysis of bismuthnitrate according to various reaction conditions and to propose the property difference between synthesized pearl pigment and bismuthsubnitrate as pharmaceuticals by means of X-ray diffraction, IR, DTA and TGA. The pearl pigment could be obtained by reaction of bismuth nitrate-diluted nitric acid solution with cold water (5.deg.) agitation at lower pH. The pearl pigment was BiO. NO$_{3}$. 2H$_{2}$O. in composition and crystalline form was thin plate of monoclinic system and its combination with water was assumed to be hydrated hydrous form between Bi-H$_{2}$O bond. On the other hand, bismuthsubnitrate was 5BiO.4NO$_{3}$.6H$_{2}$O in composition and crystalline form was pillar of rhombic system and the bond between Bi and H$_{2}$O molecules was assumed to be hydrous form. The different properties between two compounds in structure are presumed to be caused by the hydrolysing conditions of bismuthnitrate respectively.

  • PDF

Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material

  • Jung, Kyeong Youl;Han, Jang Hoon;Kim, Dae Sung;Choi, Byung-Ki;Kang, Wkang-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.461-472
    • /
    • 2018
  • $Gd_2O_3:Eu/Bi$ nanoparticles were synthesized via spray pyrolysis and applied for the preparation of a luminescent pearl pigment as an anti-counterfeiting material. The luminescence properties were optimized by changing the $Eu^{3+}$ and $Bi^{3+}$ concentration. Ethylene glycol was used as an organic additive to prepare the $Gd_2O_3:Eu/Bi$ nanoparticles. The highest emission intensity was achieved when the total dopant content was 10.0 at.% and the mole fraction of Bi was 0.1. The concentration quenching was mainly due to dipole-dipole interactions between the same activators, and the critical distances were 9.0 and $19.6{\AA}$ for $Eu^{3+}$ and $Bi^{3+}$, respectively. The prepared $Gd_2O_3:Eu/Bi$ powder exhibited an average size of approximately 82.5 nm and a narrow size distribution. Finally, the $Gd_2O_3:Eu/Bi$ nanophosphor coated on the surface of the pearl pigment was confirmed to have good red emission under irradiation from a portable ultraviolet light-emitting diode lamp (365 nm).

The Study of High-functioning Electrodeposition Technology That Pearl-like Feeling Expressed for Medical Devices for Smart Health (펄감을 표현하는 스마트 헬스 의료기기용 고기능 전착기술에 관한 연구)

  • Chang, Ho-Gyeong;Lee, Il-Bong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.273-279
    • /
    • 2015
  • Recently, medical devices for a smart health development and dissemination are becoming increasingly frequent use of devices and their's thermal stability, durability, the external splendors are required. Industrial demand for smart health medical devices uses high-functioning electrodeposition technology that expressed pearl-like feeling is rapidly increasing. Generally, pearl powder is added to electrodeposition pigment in order to form a coating which shows pearl-like feeling. On the other hand, the electrodeposition technology for the smart health medical devices uses a new method that can express pearl-like feeling without using pearl powder. In this study, we was tried to find out the most appropriate texture formation, the right dilution recipe. We've tried various ptoportions of pigments (ED-600, ED-600S, ED-MX, ED-M). As a result, we found out that ED-600 and ED-MX (15% solid) in appropriate concentration showed the best adherence rate. By several samples tests and experiments which include washing the fixed pigment in various temperature levels ($20{\sim}40^{\circ}C$) and drying, we were able to get the best results in drying condition of $180{\pm}10^{\circ}C$ and $30{\pm}5min$. The research showed that it is mush more competitive and cost effective to use the new method that produces natural pearl-like feeling on the surface than to add pearl powder to high-functioning electrodeposition pigment, which is a method that has been used for the smart health medical devices so far.

Preparation and Coating of Artificial Pearl using Inorganic Pigment (무기안료를 이용한 인공진주 코팅 및 제조)

  • Shin, Cheol-Woo;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.528-535
    • /
    • 2015
  • Humanity has tended pursuing beauty. Pearls has been loved by many people for thousands of years as a symbol of wealth and status. Today, Artificial pearl were made using organic pigment due to bright colors and easy coating process. But the new coating technique is required due to low durability, weather resistance and difficulty of luxurious luster expression. This study, nitrocellulose and urethane were used as binder and inorganic pigment were used to expression of colors. Experimental variable of artificial pearl with nitrocellulose and solvent ratio, urethane and curing agent ratio, the amount of pearl number of coating, drying temperature and time, and coating technology was developed. The coated artificial pearl was evaluated with color-difference meter, ultraviolet ray resistance, promotion weathering. Urethane was better than nitrocellulose when compared with weather resistance, acid-alkalinity resistance.

Development of Pearl Pigment which Has the Similar Properties of Snow in Make-up Products (눈의 물리적인 특성과 유사한 펄 원료 개발 및 이를 이용한 화장료 조성물 제조방법)

  • Lee, Yun-Ha;Kim, Kyung-Nam;Sunwoo, Gun;Rick, Norbert;Reichnek, Antje;Choi, Yeong-Jin;Ko, Seung-Yong;Han, Sang-Hun;Kang, Hak-Hee;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2008
  • Pearlescent pigments have been widely used in cosmetic applications. Up to date; the most widely used pearl effect pigment is the mica-based pigment, which uses natural mica as the substrate that is in turn coated with metal of oxide interference layer. However, when natural mica is employed as a base material the final product often has a yellowish color, mainly due to the fact that natural mica contains low levels of iron as an impurity[1,2]. This study was focused on developing a pearl pigment which might have a similar sparkling effect as snow. This effect was found to be due to its structure and purity, and this concept was also applied to development of our pearl pigments. More specifically, this invented pearl effect pigments are the mixture of glass-flake and glass-flake coated metal oxides and present the optical properties of snow matrix such as refractive index and particle size, unlike only the glass-flake or glass-flake coated metal oxides to be applied in. Using base material having similar physical properties (refractive index and particle size) as snow matrix as platelet for pearl effect pigments, these invented pigments present a three-dimensional glittering effect of the snow matrix. With this invented figments an applied; we achieved the beauty of snow crystal from makeup products containing these pigments.

Development of Multi-layered TiO2/Al, Cr/TiO2 Pearl Pigment Processed by DC and RF Magnetron Sputtering Process (DC와 RF Magnetron Sputtering 공법을 이용한 다층 TiO2/Al, Cr/TiO2 진주안료 개발)

  • Jeong Jae-Il;Lee Jeong-Hun;Jang Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.764-768
    • /
    • 2006
  • For the possible application of pearl pigment, multi-layered $TiO_2/Al,\;Cr/TiO_2$ thin film were deposited on $SiO_2$ substrate by using sputtering method, $TiO_2$ and Al or Cr was selected as a possible high and low refraction material at the film interface respectively. Optical properties including color effect were systematically studied in terms of different film thickness and film layers by using spectrometer. In order to expect the experimental results, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. The film consisting of $TiO_2/Al,\;Cr/TiO_2$ layers shows a wavelength range of $430{\sim}760nm$, typically color ranges between bluish purple and red. It was confirmed that this experimental result was quite well consistent with the experimental one.

Preparation and Coating of Red Colored Artificial Pearl by CVD Method (CVD법을 이용한 적색 인조진주 코팅 및 제조)

  • Shin, Cheol-Woo;Choi, Kyoung-Rim;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.857-864
    • /
    • 2018
  • Demand for developing artificial green pearl that meets the needs of modern people has been increasing. In this paper, eco-friendly inorganic pearlescent pigment was used instead of organic pigment and urethane resin was substituted for nitrocellulose which has been used as main materials in previous preparation method, increasing gloss from 73.4% to 86.7%. Urethane was coated on substrate before finishing with CVD, resulting high gloss of 96%. Colorimeteric analysis shows that a* and b* of CIE value was changed from +37.7 and +24.5 to +31.9 and +14.2 respectively because of CVD finishing, obtaining colorful, high gloss and durable artificial pearl. Quality and toxicity of samples was established by chemical resistance, glossiness, colorimeter, surface roughness, wear resistance, content of heavy-metal, and salt water test.

The Optical Properties of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ Multi-layered Pearl-pigment films by DC, RF Magnetron Sputtering (DC, RF Magnetron Sputtering 공법을 이용한 다층 $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ 진주안료용 필름의 광학적 특성)

  • Lee, Nam-Il;Jang, Gun-Eik;Jeong, Jae-Il;Cho, Seong-Yoon;Jang, Gil-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.448-449
    • /
    • 2006
  • For the possible applicative pearl pigment, multi-layered $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ thin film was deposited on glass substrate by using sputtering method. $TiO_2$ and Al or Cr was selected as a possible high and low refraction materials at the film interface respectively. Optical properties including color effect were systematically studied in terms of different film thickness and film layers by using spectrometer. In order to expect the experimental results, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. The film consisting of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ layers show the wavelength range of 430 - 760nm, typically color ranges between bluish purple and red. It was confirmed that this experimental result was quite well matched with the experimental one.

  • PDF