• 제목/요약/키워드: penalization

검색결과 56건 처리시간 0.028초

Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구 (COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD)

  • 이소현;이진범;김종욱;문영준
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

뒷날이 잘린 2차원 수중익의 와도 흘림 주파수 (Vortex Shedding Frequency for a 2D Hydrofoil with a Truncated Trailing Edge)

  • 이승재;이준혁;서정천
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.480-488
    • /
    • 2014
  • Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.

신용평점화에서 벌점화를 이용한 절단값 선택 (Cutpoint Selection via Penalization in Credit Scoring)

  • 진슬기;김광래;박창이
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.261-267
    • /
    • 2012
  • 신용평점표(credit scorecard) 작성시 각 특성변수(characteristic variable)들을 몇 개의 속성(attribute)들로 나누고 각 속성에 적절한 가중치를 부여하게 된다. 이 과정을 성김화(coarse classi cation)라 한다. 특성변수들을 속성들로 나눌 때 그 기준이 되는 절단값(cutpoint)을 선택해야 한다. 본 논문에서는 벌점화(penalization) 기반의 절단값 선택법을 제안한다. 또한 여러가지 모의실험과 실제 신용자료의 분석을 통하여 제안된 방법과 기존의 절단값 선택법인 스플라인 분류 기계 (Koo 등, 2009)의 성능을 비교한다.

Hybrid Particle-Mesh 방법에 적합한 다중영역 방법 (A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD)

  • 이승재;서정천
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.

재료분포의 연속적인 근사를 이용한 위상최적설계 방법의 비교 연구 (Comparative Studies of Topology Optimization Using Continuous Approximation of Material Distribution)

  • 임영석;유정훈;사전현이랑;서협진이;민승재
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.164-170
    • /
    • 2006
  • To prevent the numerical instabilities in topology optimization, continuous approximation of material distribution (CAMD) is proposed to the homogenization design method (HDM) and the simple isotropic material with penalization (SIMP) method. The continuous FE approximation of design variables including high order elements is applied to the formulation of SIMP method. Numerical examples are presented to compare the efficiency of CAMD both in HDM and SIMP.

SIMP 기반 절점밀도법에 의한 3 차원 위상최적화 (3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm)

  • 김철;팡난
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

하이브리드 입자-격자 방법에서의 압력장 계산 (Computation of Pressure Fields for a Hybrid Particle-Mesh Method)

  • 이승재;서정천
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계 (Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading)

  • 고동신;이현경;허덕재
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.353-358
    • /
    • 2018
  • 본 연구는 전기자동차 충전시스템에서 전력변환장치의 경량화를 위한 최적화 분석프로세스에 대한 내용을 서술하였다. 최적화 설계는 재료 물성치에 대한 설계민감도와 수학적 최적화를 결합하여 주어진 재료량 제한조건 하에 최적의 재료분포를 찾는 설계기법으로 위상의 고정화, 자유도가 묶이는 문제 등을 해결할 수 있는 위상 최적화방법을 사용하였으며, 위상 최적화 방법 중 비교적 수식화가 간단하고 수렴성이 좋은 SIMP법(solid isotropic material with penalization)에 의해 경량화 설계를 수행하였다. 경량화 설계는 3단계의 절차로 구성하였으며, 첫 번째 단계로 전력변환장치의 기본 설계에 대한 유한요소모델을 구성하고, 하중에 대한 정적해석을 수행하였다. 두 번째 단계로 정적해석 결과에 대해 등방성 재료의 강성계수를 적용한 밀도법을 이용하여 위상 최적화를 수행하여 경량화를 위한 최적 형상을 도출하였다. 세 번째 단계로 최적 형상에 대해 차량 탑재 부품의 충격시험기준에 만족하는 반정현파 펄스형태 충격하중을 인가하여 충격해석을 수행하였다. 위상 최적화단계에서 사용 환경조건으로 설계영역 정의는 마운팅 브래킷 영역으로 제한하였으며, 마운팅 브래킷의 설계 최적화를 통해 최종적으로 기본설계대비 20%이상의 경량화가 가능한 설계기술을 확보하였다.