• Title/Summary/Keyword: pepper harvester variety

Search Result 3, Processing Time 0.017 seconds

Field performance analysis of a card cleaner type separating system for a self-propelled pepper harvester

  • Shin, Seo-Yong;Cho, Yongjin;Kim, Su-Bin;Kim, Dae-Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.921-931
    • /
    • 2020
  • This study was carried out to determine the factor of a separating system according to the pepper varieties and the absence of a card cleaner system. The pepper varieties of Jeokyoung and AR-Legend were transplanted on November 20, 2019 and tested on March 18, 2020 with a harvesting speed of 0.2 m·s-1 for 10 pepper plants. The performance evaluation was determined by analyzing the separation efficiency of the peppers and the foreign matter mixing rate. The pepper harvester with a card cleaner showed a higher separation efficiency of the peppers compared to the pepper harvester without a card cleaner. The average separation efficiency of peppers on the pepper harvester with a card cleaner was higher at 13.5% for Jeokyoung and 1.9% for AR-Legend than that without a card cleaner. The mixing ratio of foreign materials on the pepper harvester with a card cleaner was lower at 8.7% and 2.5% for Jeokyoung and AR-Legend than that without a card cleaner, respectively. For the two-way ANOVA results according to the variety and the card cleaner, there was no effect on the separation efficiency of the peppers, but there was an effect on the foreign matter mixing rate.

Measurement of Mechanical and Physical Properties of Pepper for Particle Behavior Analysis

  • Nam, Ju-Seok;Byun, Jun-Hee;Kim, Tae-Hyeong;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Purpose: This study was conducted to investigate the mechanical and physical properties of a Korean red pepper variety for particle behavior analysis. Methods: Poisson's ratio, modulus of elasticity, shear modulus, density, coefficient of restitution, and coefficient of friction were derived for "AR Legend," which is a domestic pepper variety. The modulus of elasticity and Poisson's ratio were measured through a compression test using a texture analyzer. The shear modulus was calculated from the modulus of elasticity and Poisson's ratio. The density was measured using a water pycnometer method. The coefficient of restitution was measured using a collision test, and the static and dynamic friction coefficients were measured using a inclined plane test. Each test was repeated 3-5 times except for density measurement, and the results were analyzed using mean values. Results: Poisson's ratios for the pepper fruit and pepper stem were 0.295 and 0.291, respectively. Elastic moduli of the pepper fruit and pepper stem were $1.152{\times}10^7Pa$ and $3.295{\times}10^7Pa$, respectively, and the shear moduli of the pepper fruit and pepper stem were $4.624{\times}10^6Pa$ and $1.276{\times}10^7Pa$, respectively. The density of the pepper fruit and the pepper stem were $601.8kg/m^3$ and $980.4kg/m^3$, respectively. The restitution coefficients between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.383, 0.218, 0.277, 0.399, and 0.148, respectively. The coefficients of static friction between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.455, 0.332, 0.306, 0.364, and 0.404, respectively. The coefficients of dynamic friction between a pepper fruit and plastic and a pepper stem and plastic were 0.043 and 0.034, respectively.

Development and performance analysis of a crawler-based driving platform for upland farming (밭 농업용 무한궤도 기반 주행 플랫폼 개발 및 성능 분석)

  • Taek Jin Kim;Hyeon Ho Jeon;Md Abu Ayub Siddique;Jang Young Choi;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.100-106
    • /
    • 2023
  • We developed a crawler-based driving platform that can perform harvesting, transportation, pest control, and rotary operation by equipping it with various implements, and analyzed its performance. This single platform was developed to perform as pepper harvester, peanut harvester, and transporter with a 46-kW engine. A simulation model was developed to study the specifications of the platform, and the accuracy was also analyzed. The absolute percentage error ranged from 0.2 to 5.9%, which made it possible to predict the platform performance using simulation model. In T-test, both torque and speed on field and asphalt showed a significant difference (1%). Driving torque required differed depending on the nature of the field, and the speeds also changed based on soil load. The developed platform has the advantage of being equipped with a variety of working tools, expected to be used to harvest root crops in the future.