• Title/Summary/Keyword: peptide

Search Result 3,217, Processing Time 0.031 seconds

Effect of RGD Peptide on Ethylene Production from Cultured Carrot Cells (당근 배양세포에서 RGD Peptide가 에틸렌 생성에 미치는 영향)

  • 이준승
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.391-398
    • /
    • 1993
  • It has been inferred that membrane-ECM (extracellular matrix) interaction in plants may be also mediated by an RGD-dependent recognition system as in animal cells. Effects of RGD peptide on ethylene production was examined in suspension cultured carrot cells. Treatment of the cells with RGD peptide containing RGD (Arg-Gly-Asp) sequence stimulated ethylene production. When RGD peptide was applied to carrot cells treated with 1M, the effect of RGD peptide appeared to be additive. ACC synthase activity in cells pretreated with RGD peptide likewise increased over the control. In an effort to check the sequence specificity of the RGD peptide, cells were treated with substituted RGD peptide, i.e. RGK (Arg-Gly-Lys) and RGE (Arg-Gly-Glu) peptide, respectively. RGK peptide did not stimulate ethylene production but RGE peptide did. The results strongly suggest that the stimulatory effect of RGD peptides on ethylene production may be associated with a physiological phenomenon through a specific recognition between RGD peptide including RGD sequence and their putative plasma membrane receptors.eptors.

  • PDF

Peptide Amidation: Production of Peptide Hormones in vivo and in vitro

  • Kim, Kyun-Hwan;Baik L. Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.244-251
    • /
    • 2001
  • Over half of all biologically active peptide and peptide hormones are $\alpha$-amidated at their C-terminus, which is essential for their full biological activities. Amidation is accomplished through the sequential reaction of the two enzymes encoded by the single bifunctional, peptidyl-glycine $\alpha$-amidating monooxygenase (PAM or an $\alpha$-amidating enzyme). PAM catalyze the forma - tion of a peptide amide from peptide precursors that include a C-terminal glycine, and requires copper molecular oxygen and ascorbate. PAM is the only enzyme that produces peptide amides in vivo. However various strategies utilizing PAM, carboxypeptidase-Y enzymes, and chemical syn-thesis have been developed for producing peptide amides in vitro. The growing need and impor-tance of peptide amide drugs has highlighted the necessity for a efficient in vitro amidating sys-tem for industrial application for the production of peptide hormones, like calcitonin and oxytocin. This review presents the current situation regarding amidation with a special emphasis on the in-dustrial production or peptide hormones.

  • PDF

Effect of Peptide Charge on the Formation of Acylated Peptide Impurities in PLGA Formulations

  • Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.91-94
    • /
    • 2011
  • The purpose of this study was to investigate the effect of peptide charge on the interaction between peptide and poly(D,L-lactide-co-glycolide) (PLGA) for evaluating mechanism of acylated peptide formation in PLGA matrix. As a model peptide, octreotide, a synthetic somatostatin analogue and active ingredient of commercial PLGA product, was used. The disulfide group of octreotide was reduced with dithiothreitol and the sulfhydryl groups were modified with N-${\beta}$-maleimidopropionic acid (BMPA) to neutralize octreotide with positive charge in physiological conditions. The BMPA-conjugated octreotide was identified by measuring the molecular mass with liquid chromatography-mass spectrometry. In the interaction study with PLGA, native octreotide showed initial adsorption to PLGA and substantial production of acylated peptides (56% of overall peptide), whereas BMPA-conjugated octreotide showed minimal adsorption to PLGA and no acylation products for 42 days. Consequently, the neutralization of octreotide completely inhibited the peptide acylation by preventing interaction of peptide with PLGA. In conclusion, this study demonstrates that the initial polymer interaction of peptide is important step for peptide acylation in PLGA matrix and suggests the modulation of peptide charge as strategy for inhibiting the formation of acylated peptide impurities.

The Production of Lunasin Peptide Using E. coli and P. pastoris, and Inhibitory Effect of Histone Acetylation (대장균과 효모를 이용한 lunasin peptide의 생산 및 histone acetylation 억제활성)

  • Park, Jae Ho;Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In this study, we produced the recombinant lunasin peptide using E. coli and P. pastoris, and evaluated biological activity of the recombinant lunasin peptide. Lunasin peptide was produced from E. coli transfected with pPGEX-lunasin expression vector and P. pastoris GS115 transfected with pPIC-lunasin expression vector. These recombinant lunasin peptides were similar to the synthetic lunasin peptide in the identification by LC-ESI-MS. In addition, the recombinant lunasin peptide from E. coli and P. pastoris was bound in the chromatin, and inhibited histone acetylation and the activity of histone acetyltransferase. These findings suggest that the production of the lunasin peptide using E. coli and P. pastoris will be useful for industrial utilization of lunasin peptide.

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Dynamic Research of a Potential Carrier for Hydrophobic Compound Model Pyrene Using Amphiphilic Peptide EYK

  • Wang, Liang;Zhao, Xiao-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.620-624
    • /
    • 2011
  • In recent years, the study of self-assembly peptide used in drug delivery system has been attracted great interest from scientists. In the category are self-assembly peptides in the structure either with one hydrophobic surface and another hydrophilic or a hydrophobic head and a hydrophilic tail. Here, we focus on a novel designed peptide EYK with double amphiphilic surfaces, investigating on the capability of peptide as a carrier for hydrophobic compound model pyrene. The fluorescence data presented the dynamic process of the transfer, showing that the pyrene was in the crystalline form in peptide solution, and molecularly migrated from its peptide encapsulations into the membrane bilayers when the peptide-pyrene suspension was mixed with liposome vesicles. The results indicated that the peptide EYK could stabilize hydrophobic pyrene in aqueous solution and delivered it into EPC liposome as a potential carrier.

Theoretical Peptide Mass Distribution in the Non-Redundant Protein Database of the NCBI

  • Lim Da-Jeong;Oh Hee-Seok;Kim Hee-Bal
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2006
  • Peptide mass mapping is the matching of experimentally generated peptides masses with the predicted masses of digested proteins contained in a database. To identify proteins by matching their constituent fragment masses to the theoretical peptide masses generated from a protein database, the peptide mass fingerprinting technique is used for the protein identification. Thus, it is important to know the theoretical mass distribution of the database. However, few researches have reported the peptide mass distribution of a database. We analyzed the peptide mass distribution of non-redundant protein sequence database in the NCBI after digestion with 15 different types of enzymes. In order to characterize the peptide mass distribution with different digestion enzymes, a power law distribution (Zipfs law) was applied to the distribution. After constructing simulated digestion of a protein database, rank-frequency plot of peptide fragments was applied to generalize a Zipfs law curve for all enzymes. As a result, our data appear to fit Zipfs law with statistically significant parameter values.

Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation

  • Lee, Eung-Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2021
  • Peptides are short chain of amino acids linked by peptide bonds. They are widely used as effective and biocompatible active ingredients in cosmetic industry. In this study, we developed novel peptide mixture and identified its anti-pigmentation effect on melanocytes and keratinocytes. Our results revealed that peptide mixture inhibited melanosome biogenesis through the regulation of microphthalmia-associated transcription factor, a key factor of melanogenesis in melanocytes. And we observed that peptide mixture inhibited melanosome uptake through the reduction of protease-activated receptor 2, a phagocytosis-related receptor in keratinocytes. Furthermore, peptide mixture activated autophagy system resulting in degradation of transferred melanosomes in keratinocytes. The anti-pigmentation effect of multi-targeting peptide mixture was assessed in a human skin equivalent model (MelanoDerm). Melanin contents in epidermal layer were significantly decreased by topical treatment of peptide mixture, suggesting that it can be applied as a novel cosmetics material having a whitening function.