• Title/Summary/Keyword: perchlorate

Search Result 248, Processing Time 0.029 seconds

The Analysis of Perchlorate in Nakdong River and Tap Water (낙동강 수계 및 수돗물에서의 Perchlorate($ClO_4^-$) 분석)

  • Kim, Hwa-Bin;Oh, Jeong-Eun;Lee, Sung-Yun;Cho, Jae-Weon;Snyder, Shane
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.776-781
    • /
    • 2006
  • Perchlorate ion($ClO_4^-$), which is present in the solid propellant for rocket, herbicide and some fertilizers. Perchlorate inhibits iodide uptake by the human thyroid gland. Impairment of thyroid function in expectant mothers may impact the fetus and result in effects including cerebral palsy, give rise to thyroid gland cancer. The US EPA(Environmental Protection Agency) adopted a reference dose(RfD) for perchlorate 0.0007 mg/kg-day, and this guidance lead to a Drinking Water Equivalent Level(DWEL) of 24.5 ${\mu}g/L$. The studies about perchlorate are actively performed in foreign countries, especially in USA but there is no study which surveyed the perchlorate contamination in Korea. Therefore, this study was done to investigate perchlorate contamination in Nak-dong river and tap water. The perchlorate was detected in Nakdong river and ranged from ND to 278.4 ${\mu}g/L$. The highest concentration was observed in Kumichon. The perchlorate concentration was decreased with the down stream of Nakdong river. The perchlorate concentration in tap water was varied with the cities and the concentration levels were $ND{\sim}34.1$ ppb. The highest perchlorate concentration was observed in DalsuGoo in Daegu and the similar concentration($9{\sim}11$ ${\mu}g/L$) was detected in most of the districts in Busan. The result of this study suggests that there is a perchlorate source near the Nakdong river and the urgent policy is needed to control perchlorate for the cities which are supplied from Nakdong river as for their tap water.

Bioreduction Characteristics of Perchlorate in Raw Sewage (생하수의 퍼클로레이트 생분해 특성)

  • Hong, Seong Hwan;Choi, Hyeoksun
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • This research was done to investigate the bioreduction characteristics of perchlorate in raw sewage because sewage contains biodegradable organics and various microorganisms for biological perchlorate reduction. Two different types of sewage were tested for biological perchlorate reduction in the flasks. Sewage A was collected from the screening equipment and sewage B was collected from the primary settlement in the municipal wastewater treatment facilities. Perchlorate was completely reduced within 72hours from 8.2 and 10.4 mg/L in the sewage A and sewage B flask tests. When perchlorate and nitrate were added in sewage A, both perchlorate and nitrate were reduced. However, perchlorate and nitrate removal rates were 9.3% and 64.0% at 72hours in sewage B. Perchlorate reduction was significantly inhibited by high salinity(0.5% NaCl) in the sewage A and B. These results showed the sewage has potential for the biological perchlorate reduction in the sewage pipe.

Reduction of Highly Concentrated Perchlorate in Aqueous Medium by Newly Isolated Bacterial Strains Rhodococcus sp. YSPW01 and YSPW02 (신균주 Rhodococcus sp. YSPW01과 YSPW02를 이용한 수중 내 고농도 Perchlorate 환원 특성 연구)

  • Lee, Sang-Hoon;Hwang, Jae-Hoon;Akhil, Kabra;Lee, Dae Sung;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.352-358
    • /
    • 2014
  • The feasibility of perchlorate reducing-bacteria isolated from the sludge of an anaerobic digester was determined using ammonium perchlorate in aqueous medium. Growth kinetics of the two perchlorate reducing bacteria including Rhodococcus sp. YSPW01 and YSPW02 were investigated using acetate as the electron donor in batch experiment. The growth of YSPW01 and YSPW02 reached a steady-state at 26 and 9 h, respectively. The initial perchlorate concentration was completely reduced within 8 and 7 h by YSPW01 and YSPW02, respectively. The reduction rates were 2.1 and $15mg\;L^{-1}h^{-1}$ for YSPW01, and 3.2 and $15.5mg\;L^{-1}h^{-1}$ for YSPW02, at 1:1 and 5:1 ratios of acetate:perchlorate (w:w), respectively. In this study, the bacteria Rhodococcus sp. YSPW01 and YSPW02 demonstrated a potential for the perchlorate reduction, which could be further investigated for development of an efficient strategy to treat the perchlorate contaminated waters.

Review on Risks of Perchlorate and Treatment Technologies (퍼클로레이트(Perchlorate)의 위해성과 저감기술 소개)

  • Shin, Kyung-Hee;Son, Ah-Jeong;Cha, Daniel K.;Kim, Kyoung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1060-1068
    • /
    • 2007
  • Perchlorate contamination in aquatic system is a growing concern due to the human health and ecological risks associated with perchlorate exposure. In spite of potential risks associated with perchlorate, drinking water standard has not been established worldwide. Recently, US EPA has issued new protective guidance for cleaning up perchlorate contamination with a preliminary clean-up goal of 24.5 ppb. In Korea, the drinking water standard and discharge standard for perchlorate has not been established yet and little information is available to address perchlorate problems. Perchlorate treatment technologies include ion exchange, microbial reactor, carbon adsorption, composting, in situ bioremediation, permeable reactive barrier, phytoremediation, and membrane technology. The process description, capability, and advantage/disadvantages of each technology were described in detail in this review. One of recent trends in perchlorate treatment is the combination of available treatment options such as combined microbial reduction and permeable reactive burier. In this review, we provided a brief perspective on perchlorate treatment technology and to identify an efficient and cost-effective approach to manage perchlorate problem.

Perchlorate Removal by Perchlorate Reducing Bacteria Consortium in a Continuous Bioreactor (연속생물반응기에서 perchlorate 환원 세균에 의한 perchlorate의 제거)

  • Ryu, Hee-Wook
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.28-32
    • /
    • 2012
  • In this study, the treatment ability of the wastewater containing perchlorate by non-salt tolerant perchlorate reducing bacterial consortium (N-PRBC) was evaluated in a continuous stirred tank bioreactor (CSTR). To obtain the optimal operating condition the bioreactor was operated with the different wastewater empty bed retention time (EBRT). The treatment performance in the bioreactor could be maintained at 100 $mg-ClO_4{^-}L^{-1}$ up to a EBRT of 3 h, and the removal capacity in the CSTR was about 3.3 times higher than that in a batch operation. With a decrease from 9 h to 2 h in a EBRT, the volumetric perchlorate reduction rate was increased from 11.1 $mg-ClO_4{^-}L^{-1}h^{-1}$ to 50.0 $mg-ClO_4{^-}L^{-1}h^{-1}$, and the specific perchlorate reduction rates were increased from 3.01 $mg-ClO_4{^-}g-DCW^{-1}h^{-1}$. In conclusion, the treatment capacities in a CSTR were much better than those obtained in a batch operation.

Analysis and Exposure Assessment of Perchlorate in Korean Dairy Products with LC-MS/MS

  • Oh, Sung-Hee;Lee, Ji-Woo;Mandy, Pawlas;Oh, Jeong-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.12.1-12.7
    • /
    • 2011
  • Objectives: Perchlorate is an emerging contaminant that is found everywhere, including various foods. Perchlorate is known to disturb the production of thyroid hormones and leads to mental disorders in fetuses and infants, as well as metabolic problems in adults. In this study, we attempted to establish an LC-MS/MS method for measuring perchlorate in dairy products and used this developed method to investigate perchlorate levels in Korean milk and yogurt samples. Methods: The developed method of perchlorate analysis requires a shaker and 1% acetic acid/acetonitrile as the extracting solvent. Briefly, the samples were extracted and then centrifuged (4000 rpm, 1hour), and the supernatant was then passed through a $Envi^{TM}$ Carb SPE cartridge that had been prewashed sequentially with 6 mL of acetonitrile and 6 mL of 1% acetic acid in water. The final volume of the sample extract was adjusted to 40 mL with reagent water and the final sample was filtered through a 0.20-${\mu}m$ pore size PTFE (Polytetrafluoroethylene) syringe filter prior to LC-MS/MS. Results: The average levels of perchlorate in milk and yogurt samples were $5.63{\pm}3.49\;{\mu}g/L$ and $3.65{\pm}2.42\;{\mu}g/L$, respectively. The perchlorate levels observed in milk samples in this study were similar to those reported from China, Japan, and the United States. Conclusions: The exposure of Koreans to perchlorate through the consumption of dairy products was calculated based on the results of this study. For all age groups, the calculated exposure to perchlorate was below the reference of dose (0.7 ${\mu}g/kg$-day) proposed by the National Academy of Science, USA, but the perchlorate exposure of children was higher than that of adults. Therefore, further investigation of perchlorate in other food samples is needed to enable a more exact assessment of exposure of children to perchlorate.

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk;Kim, Hyungi;Girault, Hubert H.;Lee, Hye Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2577-2582
    • /
    • 2013
  • A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

Occurrence of Perchlorate in Drinking Water in Korea (국내 주요 정수장 수돗물의 퍼클로레이트 검출현황)

  • Kim, Hyun-koo;Kim, Joung-hwa;Lee, Youn-hee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.822-828
    • /
    • 2007
  • Perchlorate is an unregulated contaminant but recently many cases of perchlorate contamination have been reported in the US. In Japan, also, a couple of contamination incidents caused by perchlorate occurred. Against this backdrop, investigation on perchlorate was urgent for Korea. Accordingly, perchlorate investigation in tap water and river water was conducted one time a week for seven consecutive weeks at major water sources of Korea including Han River, Guem River, Yeong-san River, and Nak-dong River. Perchlorate was not found at Han River, Guem River, and Yeong-san River. However, all the 4 tap water samples in Nak-dong River recorded high level of perchlorate. Among others, NT1 located at Daegu posted the highest value of $22.3{\mu}g/L$. This level is lower than $24.5{\mu}g/L$, the threshold recommended by US EPA. Still, perchlorate contamination in drinking water can deal a heavy blow to nerve development of infants and children by causing iodine deficiency. At the 1st and 2nd investigations, perchlorate concentration reached $18.7{\sim}95.6{\mu}g/L$ and $4.0{\sim}25.6{\mu}g/L$ respectively, both of which are relatively higher. The high perchlorate concentration in Nak-dong River was possible because of the waste water discharged from LCD manufacturing factory which was located at NS3 in Gumi, Korea. Perchlorate concentration of waste water from the factory was $730{\sim}1,858{\mu}g/L$.

THE EFFECT OF OXYGEN ON PERCHLORATE REDUCTION IN A BIOFILM REACTOR

  • Choi, Hyeok-Sun
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2007
  • The purpose of this research was to investigate the effects of low concentration of oxygen on reduction of perchlorate, especially low perchlorate influent concentrations in a biofilm reactor, as well as the effect of flow pattern in a biofilm reactor. Dissolved oxygen averaging 1 mg/L did not inhibit reduction of influent perchlorate from 23 to $426\;{\mu}g/L$ in the biofilm reactors when sufficient acetate was added, probably due to limitation of oxygen diffusion into the biofilm. Influent perchlorate ranging from 23 to $426\;{\mu}g/L$ was reduced to below detection level ($4\;{\mu}g/L$) in the presence of 1 mg/L dissolved oxygen (DO). Chloride was produced in a ratio of $0.37gCl^-/g{ClO_4}^-$ and $0.35gCl^-/g{ClO_4}^-$ in plug flow and recirculation biofilm reactor which is similar to stoichiometric amount ($0.36gCl^-/g{ClO_4}^-$) indicating complete perchlorate reduction at $426\;{\mu}g/L$ of ${ClO_4}^-$ feeding. At $23\;{\mu}g/L$L influent perchlorate, total biomass solids were 3.18 g and 2.81 g in the plug flow and recirculation biofilm reactors. The most probable number(MPN) analysis for perchlorate-reducing bacteria showed $10^4$ to $10^5\;cells/cm^2$ in both biofilm reactors throughout the experiments. The effluent perchlorate concentrations were not significantly different in the two different flow regimes, plug flow and recirculation biofilm reactors.

Development of Enhanced Analytical Method for Perchlorate in Food by IC-MS/MS with an Internal Standard (IC-MS/MS와 내부표준물질을 이용한 식품 중 perchlorate 분석법 개선)

  • Yang, Min-June;Kim, Jong-Sung;Han, Jong-Hun;Her, Nam-Guk
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.532-536
    • /
    • 2011
  • The internal standard method using ion chromatography combined with tandem mass spectrometry (IC-MS/MS) for quantifying perchlorate in different types of food was established. Because the presence of ions and other biomolecules in matrices usually interrupts accurate determination of perchlorate, it is necessary to develop efficient, reproducible method to determine perchlorate concentrations in food. In this study, the internal standard method was compared with the external standard method to determine perchlorate concentrations in standard samples. The obtained method detection limit (MDL) for perchlorate was 0.005 ${\mu}g/L$ for bottled water, 0.12 ${\mu}g/L$ for milk, 0.27 ${\mu}g/kg$ for rice, 0.16 ${\mu}g/kg$ for vegetables, and 0.07 ${\mu}g/kg$ for seaweed, respectively. The limit of quantitation (LOQ) was calculated by multiplying the MDL by 7. The recoveries of perchlorate from food samples spiked with perchlorate ranged from 98 to 105% and their percent relative standard deviation (%RSD) levels were <20%. This method was successfully applied for the quantitative determination of perchlorate in various kinds of food.