• Title/Summary/Keyword: permanent magnet

Search Result 2,869, Processing Time 0.033 seconds

Design of Magnet Shape for Axial-Flux Type Permanent-Magnet Synchronous Generator with Dual Air-Gap (횡자속형 2중 공극 영구자석 동기발전기의 마그네트 형상설계)

  • Choi K.H.;Kim K.S.;Jin M.C.;Hwang D.H.;Bae S.W.;Kim D.H.;Ro C.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.828-831
    • /
    • 2003
  • This paper presents a novel design technique and characteristic analysis of Magnet for dual air-gap axial-flux type permanent-magnet synchronous generator. The process of magnet design is applied to the motor design and steady state analysis considering output voltage waveforms and magnetic flux waveforms. Design and construction of an axial-flux permanent-magnet generator with power output at 60 [Hz], 300[r/min] is introduced. Finite-element (FE) method is applied to analyze magnet shape characteristics. The results of FE analysis show generator is feasible for use with dual air-gap axial-flux permanent- magnet synchronous generator.

  • PDF

Characteristics Analysis of BLOC Motor with C type Permanent Magnet (C type 영구자석을 갖는 BLDC 모터의 특성 해석)

  • Rhyu, S.H.;Im, T.B.;Chung, J.K.;Ha, K.S.;Lee, S.H.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.50-52
    • /
    • 2001
  • The BLDC(Brushless DC) motor with the permanent magnet has many merits such as high efficiency and efficiency. These characteristics of the BLDC motor makes them one of the most popular motors in the world today. The C type ferrite magnet is many used in BLDC motor for high performance, especilly low price. Many papers have been written on the analysis of the BLDC motor with C type ferrite magnet. But, most of these target models are contained symmetric distribution of permanent magnet. In this paper, investigations are made on different distribution of permanent magnets for a understanding of the effects of unequal permanent magnet location on the unbalanced cogging torque. Motor torque and cogging torque are obtained by using the 2 dimensional finite element method.

  • PDF

Design and Small-sized Frame of The Permanent Magnet Motor from New Material of Magnetic (신 자성재질을 통한 영구자석형 전동기의 설계 및 소형화 방안)

  • Kim, Choong-Sik;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.721-722
    • /
    • 2006
  • Industrialization and technique consequently in quick development the motor field small size and light weight, high efficiency and highly energy density in necessity. The permanent magnet motor small size and the research regarding the research of the torque and efficiency is coming to be active. From this paper the research regarding the quality permanent magnet motor and analysis and it was developed recently the NdFeB anisotropic bond magnet which is a high magnetic force material use, from the hazard which accomplishes power density it is high permanent magnet motor of small size and light weight it researched. The Finite Element Method it led and motor optimization. Also the experiment and analysis permanent magnet motor it is improved the motor and result it led and different it compared.

  • PDF

Characteristic of Moving Coil type Linear Oscillatory Actuator by Multi-Pole Permancent Magnet Arrangement (영구자석 다극 배치에 의한 가동 코일형 리니어 진도 엑츄에이터의 특성)

  • 김덕현;강규홍;홍정표;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.273-281
    • /
    • 2001
  • In order to overcome the demerit and to improve the operation characteristics of Moving Coil type Linear Oscillatory Actuator(MC-LOA) with single-pole permanent magnet, this paper presents two models having the balanced magnetic circuit by multi-pole permanent magnet. They are short coil type with two-pole single-sided and two-ple double-sided permanent magnet. The characteristics between single-pole and multi-pole permanent magnet type MC-LOA are compared. As a result, multi-pole type MC-LOA has more merits than single-pole type about operation characteristics improvement and machine volume. The characteristics analysis is performed by their dynamic analysis composed of kinetic and electric equations and Finite Element Method(FEM). The propriety of multi-pole type MC-LOA model is verified with analysis results.

  • PDF

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.

A Study on the Iron Loss and Demagnetization Characteristics of an Inset-type Flux-Reversal Machine

  • Kim, Tae Heoung
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.297-301
    • /
    • 2013
  • Flux-reversal machine (FRM) is cost effective and suitable for mass production due to its simple structure. However, there is a notable permanent magnet flux leakage which deteriorates the performance. To compensate this drawback with a design method, an Inset-Permanent-Magnet-Type FRM (ITFRM) has been proposed. The ITFRM has permanent magnets perpendicular to the stator teeth surface, and thus, is much more difficult to demagnetize. In this paper, we deal with the iron losses and irreversible permanent magnet demagnetization characteristics of the ITFRM according to various design variables and driving conditions. To analyze the characteristics, a two-dimensional finite-element method (2D-FEM) considering nonlinear analysis of permanent magnets is used. As a result, we propose the design variables that have the largest effects on the iron losses and irreversible magnet demagnetization.

A Study on the Characteristics Analysis According to the Permanent Magnet Segmentation Change to IPMSM for Urban Railway Vehicle (도시철도차량용 IPMSM의 Magnet Segment 변화에 따른 특성 분석에 관한 연구)

  • Jeong, Geochul;Park, Chan-Bae;Jeong, Taechul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1486-1492
    • /
    • 2015
  • The following study carried out the characteristic analysis based on the magnet segment of Interior Permanent Magnet Synchronous Motor(IPMSM) for the urban railway vehicles. IPMSM affects the electromagnetic characteristics through the change in magnetic flux based on the rotor structure, and significantly influences the structural features through the change of pressure. Therefore, satisfied by the demanded traction force of the IPMSM, magnet segment derived three different model types. The 1-segment PM model consisted an undivided permanent magnet. The 2-Bridge model consisted a divided permanent magnet with the application of Bridge. The 3-Bridge model consisted additional dividing with one more Bridge applied. The electromagnetic characteristics of the three models were compared and analyzed along with the structural features regarding the scattering of permanent magnet based on strong centrifugal force from the rotation of the rotor at high speed. In conclusion, the final model with electromagnetic characteristics and structural features most suitable of IPMSM for the urban railway vehicles was derived, and the effectiveness was verified through the characteristic experiments after the production of the derived model.

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

A Study On Steering System for Mobile Robot with Permanent Magnet Wheels (영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구)

  • Kim Jin-Gak;Yi Hwa-Cho;Han Seung-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

A Study on the Design of Single Phase LSPM Considering the Irreversible Demagnetization of Permanent Magnet (불가역 감자를 고려한 단상 LSPM 설계에 관한 연구)

  • Jung, Dae-Sung;Go, Sung-Chul;Park, Hyun-June;Kwon, Sam-Young;Lee, Hyung-Woo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2186-2193
    • /
    • 2008
  • The growth on consideration of energy savings and motor efficiency has caused the LSPM(Line Start Permanent Magnet Motor) to be focused as a substitute for conventional induction motors. A Line start permanent magnet motor able to be driven at synchronous speed is designed based on a single phase induction motor in this paper. The single phase LSPM is identical to the induction motor except a permanent magnet is installed in the rotor. As the permanent magnet influences the characteristics of both transient state and steady state, a design considering both starting and synchronization conditions was used. In this paper, by adopting DOE, a single phase motor has been designed showing high power and smooth start. Also, optimal model is selected by weighting function. And the characteristics demagnetization are analyzed according to the variation of magnet shape. Finally, to verify the design results, a prototype was measured.