• 제목/요약/키워드: petroleum diesel

검색결과 250건 처리시간 0.026초

경유 대체연료로서 수첨바이오디젤의 윤활 특성 연구 (Lubricity Characterization of Hydrogenated Biodiesel as an Alternative Diesel Fuel)

  • 김재곤;전철환;임의순;정충섭
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.321-327
    • /
    • 2012
  • Paraffin bio-based hydrotreated biodiesel(HBD) is originated from vegetable oil(the process can also be applied to animal fat) with the the chemical structure $C_nH_{2n+2}$. In the number of process of the oil or fat, the hydrogenation is significantly important to create a bio-based diesel fuel. This study is focused on lubricity characteristics of BTL diesel blends to use alternative diesel fuel in Korea. The BTL diesel are blended the different volume ratios (HBD 5(5 vol.% HBD - 95 vol.% diesel), HBD 10, HBD 20, HBD 30, HBD 40 and HBD 50. HBD with paraffin compounds showed a very high centane number, low sulfur content and free aromatic compound. Especially, the wear scar of HBD showed poor lubricity compared to automotive diesel due to the fuel composition, low sulfur content and free aromatic compound. Also, the lubricity specification of automotive diesel with different six HBD blends is within the limit by the Korean standards. Finally, HBD as an alternative diesel fuel is challengeable in transportation sector of Korea.

초저황 디젤 생산을 위한 탈황 기술 동향 (Review of Desulfurization Technology for Ultra Low Sulfur Diesel Production)

  • 박조용;김재곤;임의순;정충섭
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.431-443
    • /
    • 2013
  • Sulfur content of diesel fuel has been cut down to under 10 ppm ULSD (ultra low sulfur diesel) level by environmental regulation with the aim of reducing exhaust emissions. This review discusses the methods and principles of sulfur reduction in diesel and presents an overview of new approaches for ultra-deep desulfurization. The deep HDS (hydrodesulfurization) problems of diesel streams is exacerbated by the inhibiting effect of co-existing aromatics, nitrogen compounds and $H_2S$. The new approaches to deep desulfurization includes non-HDS type processing schemes such as adsorptive, extractive and oxidative desulfurization.

경유 혼입에 의한 엔진오일 물성 변화 (Change in Physical Properties of Engine oil Contaminated with Diesel)

  • 임영관;이종은;나용규;김종렬;하종한
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발 (Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel)

  • 김혜영;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권4호
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.

수분오염에 따른 경유의 연료적 특성 (The Fuel Characteristics of Diesel by Water Contamination)

  • 임영관;원기요;강병석;박소휘;박장민;강대혁
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

경유의 방향족 함량 변화가 배출가스에 미치는 영향 연구 (The Study on Effect of Exhaust Gas Characteristics according to Aromatic compound Content in Diesel)

  • 김신;민경일;임의순;하종한;나병기
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.549-561
    • /
    • 2014
  • 미국과 유럽 등지에서는 자동차용 경유의 방향족 함량이 대기 환경오염의 원인물질로 추정하고 있다. 경유의 총 방향족 및 다고리 방향족 함량 감소가 환경 유해배출가스 HC, NOx, PM 등을 감소시키기 때문이다. 국내에서도 급변하고 있는 차량기술 및 연료품질간의 상관성 규명이 필요한 실정이다. 따라서 본 연구에서는 국내 실정에 맞는 차량과 연료간의 상호작용에 의하여 발생될 수 있는 환경적 영향평가를 진행하였으며 대상으로는 2.2L급 국내 대표 차량 2종(DPF 유 무)과 국내 정제기술로 생산된 5종의 연료를 통하여 경유의 방향족 함량에 따른 배출가스 특성을 분석하였다.

Characterization of Diesel Degrading Enterobacter cancerogenus DA1 from Contaminated Soil

  • Kim, Sang-Jun;Joo, Gil-Jae
    • 환경생물
    • /
    • 제36권2호
    • /
    • pp.190-198
    • /
    • 2018
  • The petroleum industry is an important part of the world economy. However, the massive exposure of petroleum in nature is a major cause of environmental pollution. Therefore, the microbial mediated biodegradation of petroleum residues is an emerging scientific approach used to resolve these problem. Through the screening of diesel contaminated soil we isolated a rapid phenanthrene and a diesel degrading bacterium identified as Enterobacter cancerogenus DA1 strain through 16S rRNA gene sequence analysis. The strain was registered in NCBI with an accession number MG270576. The optimal growth condition of the DA1 strain was determined at pH 8 and $35^{\circ}C$, and the highest degradation rate of the diesel was achieved at this condition. At the optimal condition, growth of the strain on the medium containing 0.05% phenanthrene and 0.1% of diesel-fuel was highest at 45 h and 60 h respectively after the incubation period. Biofilm formation was found significantly higher at $35^{\circ}C$ as compared to $30^{\circ}C$ and $40^{\circ}C$. Likewise, the lipase activity was found significantly higher at 48 h after the incubation compared to 24 h and 72 h. These results suggest that the Enterobacter cancerogenus DA1 could be an efficient candidate, for application through ecofriendly scientific approach, for the biodegradation of petroleum products like diesel.

토양 내 복합유종에 의한 오염 해석 연구 (Interpretation of Contaminated Soil by Complex Oil)

  • 임영관;김정민;김종렬;하종한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구 (A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel)

  • 김재곤;전철환;임의순;정충섭;이상봉;이윤제;강명진
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.450-458
    • /
    • 2012
  • 최근 정부는 국가 온실가스를 효율적으로 감축시켜 국제적인 기후변화에 대응하기 위하여 여러 부문에서 기술개발을 진행 중에 있다. 이를 달성하기 위하여 정부는 화석연료를 대체하고 이산화탄소를 감축시키는 수단으로 바이오연료를 저탄소와 탄소중립자원으로 검토하고 있는 실정이다. 일반적으로, 목질계로부터 생산된 2세대 바이오연료는 수송부문에서 기존 화석연료를 대체하고 온실가스를 감축하는데 큰 효과가 있는 것으로 알려져 있다. 이러한 이유로 정부는 목질계 기반 바이오매스 액화연료(biomass-to-liquid fuel)에 대해 파일럿 수준으로 기술개발 중에 있다. 따라서 본 연구에서는 바이오매스액화연료 생산을 위한 동일공정으로 합성된 F-T(Fischer-Tropsch) 디젤의 연료적 특성을 연구하였다. 합성 F-T 디젤은 자동차용 경유에 단독 또는 혼합하여 사용할 수 있는 장점으로 인해 자동차용 경유엔진에 사용될 수 있다. 그 이유는 합성 F-T 디젤이 자동차용 경유와 비슷한 물리적 특성을 가지기 때문이다. 본 연구에 사용된 F-T 디젤은 Fischer-Tropsch (F-T) 공정을 이용하여 저온($240^{\circ}C$)에서 철 촉매를 가지고 합성되었다. 합성 F-T 디젤은 n-파라핀과 iso-파라핀을 함유하고, 등유와 경유 성분을 가진 $C_{12}{\sim}C_{23+}$ 분포로 이루어졌다. 합성 F-T 디젤은 합성 F-T 연료부터 증류를 통해 분리된 합성 F-T 디젤은 자동차용 경유에 비해 세탄가가 높으며, 방향족화합물은 매우 낮고, 황함량는 초저황(sulfur free) 수준으로 평가되었다. 또한 합성 F-T 디젤은 자동차용 경유와 비교하여 황과 방향족 화합물의 함량이 낮기 때문에 윤활성이 열악함을 보였다.

연료물성에 따른 경유 차량의 저온성능 영향 연구 (A Study on the cold weather performance for diesel vehicle as fuel properties)

  • 장은정;김성우;민경일;박천규;하종한;이봉희
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.144-153
    • /
    • 2015
  • 저온에서 경유의 파라핀 왁스 생성 및 침전현상은 차량의 저온성능에 악영향을 준다. 본 연구에서는 경유에 바이오디젤, 등유, 저온특성첨가제를 혼합한 연료에 대해 연료조성에 따른 담점, 필터막힘점, 유동점 변화를 분석하였고, 경유의 저온특성에 따른 차량의 저온성능에 대해 평가하였다. 경유는 유동성향상 첨가제(WAFI)와 등유유분의 혼합량이 증가할수록 저온특성이 개선되었으며, 바이오디젤 혼합량이 증가할수록 저온특성이 악화되었다. WAFI는 필터막힘점 개선에, 등유유분은 담점 개선에 효과적이었다. 차량의 저온성능에 대하여 필터막힘점과 유동점의 영향성은 확인하였으나, 담점은 큰 영향이 없었다. 필터막힘점은 차량에 대해 저온에서의 운행가능 한계를 반영하였다.