• Title/Summary/Keyword: phaC

Search Result 106, Processing Time 0.02 seconds

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 (Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성)

  • Woo, Sang Hee;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens

  • Lim, Ju Hyoung;Rhie, Ho-Gun;Kim, Jeong Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1133-1140
    • /
    • 2018
  • Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates

  • Ahn, Junmo;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • The effects of carbon-to-nitrogen (C/N) ratio in simulated rice straw hydrolysates using glucose and ammonium chloride on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator was investigated. In general, PHA accumulation rate was higher under higher degrees of N-deficient conditions (e.g., C/N ratio of 360:1) than lower degrees of N-deficient conditions (e.g., C/N ratio of 3.6:1 and 36:1). Also, the most PHA accumulation was observed during the first 12 h after the PHA accumulation initiation. This study showed that the similar PHA accumulation could be achieved by using different accumulation periods depending on C/N ratios. N source presence was important for new cell production, supported by approximately ten times greater PHA accumulation under the N-deficient condition ($NH_4Cl$ 0.01 g/L) than the N-free (without $NH_4Cl$) condition after 96 h. C/N ratio of the rice straw hydrolysate was approximately 160:1, based on the glucose content, and this accumulated $0.36{\pm}0.0033g/L$ PHA with PHA content of $21{\pm}3.1%$ after 12 h. Since external C or N source addition for C/N ratio adjustment increases production cost, an appropriate accumulation period may be used for PHA accumulation from organic wastes, based on the PHA accumulation patterns observed at various C/N ratios and C and N concentrations.

Cloning and Functional Expression in Escherichia coli of the Polyhydroxyalkanoate Synthase (phaC) Gene from Alcaligenes sp. SH-69

  • Lee, Il;Nam, Sun-Woo;Rhee, Young-Ha;Kim, Jeong-Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.309-314
    • /
    • 1996
  • Alcaligenes sp. SH-69 can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source such as glucose. To clone the phaC gene from Alcaligenes sp. SH-69, a polymerase chain reaction was performed using the oligomers synthesized based on the conserved regions of the phaC genes from other bacteria. A PCR product (550 bp) was partially sequenced and the deduced amino acid sequence was found to be homologous to that of the phaC gene from Alcaligenes eutrophus. Using the PCR fragment Southern blotting of Alcaligenes sp. SH-69 genomic DNA digested with several restriction enzymes was carried out. To prepare a partial genomic library, about 5-Kb genomic DNA fragments digested with EcoRI, which showed a positive signal in the Southern blotting, were eluted from an agarose gel, ligated with pUC19 cleaved with EcoRI, and transformed into Escherichia coli. The partial library was screened using the PCR fragment as a probe and a plasmid, named pPHA11, showing a strong hybridization signal was selected. Restriction mapping of the insert DNA in pPHA11 was performed. Cotransformation into E. coli of the plasmid pPHA11 and the plasmid pPHA21 which has phaA and phaB from A. eutrophus resulted in turbid E. coli colonies which are indicative of PHA accumulation. This result tells us that the Alcaligenes sp. SH-69 phaC gene in the pPHA11 is functionally active in E. coli and can synthesize PHA in the presence of the A. eutrophus phaA and phaB genes.

  • PDF

Pseudomonas oleovorans의 유가식 배양에 의한 medium chain length Polyhydroxyalkanoates (MCL-PHA) 생산

  • Kim, Beom-Su;Im, Hui-Yeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.207-210
    • /
    • 2000
  • Pseudomonas oleovorans was cultivated to produce medium chain length polyhydroxyalkanoates (MCL-PHA) fram octanoic acid and ammonium nitrate as carbon and nitrogen source, respectively, by a pH-stat fed-batch culture technique. The octanoate concentration of the culture broth was maintained below 4 g/L by feeding the mixture of octanoic acid and ammonium nitrate when the culture pH rose above high limit. The effect of the ratio of octanoic acid to ammonium nitrate (C/N ratio) in the feed on the PHA production was examined. The final cell concentrations of 62.5, 54.7, and 9.5 g/L, PHA contents of 62.9, 75.1, and 67.6% of dry cell weight, and productivities of 1.03, 0.632, and 0.161 g/L/h were obtained when the C/N ratio in the feed were 10, 20, and 100 g octanoic acid/g ammonium nitrate, respectively.

  • PDF

Molecular Structure of PCR Cloned PHA Synthase Genes of Pseudomonas putida KT2440 and Its Utilization for Medium-Chain Length Polyhydroxyalkanoate Production

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Seo, Min-Cheol;Lee, Jin-Nam;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.182-190
    • /
    • 2003
  • A new phaC gene cluster encoding polyhydroxyalkanoate (PHA) synthase I PHA depolymerase, and PHA synthase II was cloned using the touchdown PCR method, from medium-chain length (mcl-) PHA-producing strain Pseudomonas putida KT2440. The molecular structure of the cloned phaCl gene was analyzed, and the phylogenic relationship was compared with other phaCl genes cloned from Pseudomonas species. The cloned phaCl gene was expressed in a recombinant E. coli to the similar level of PHA synthase in the parent strain P. putida KT2440, but no significant amount of mcl-PHA was accumulated. The isolated phaCl gene was re-introduced into the parent strain P. putida KT2440 to amplify the PHA synthase I activity, and the recombinant P. purida accumulated mcl-PHA more effectively, increasing from 26.6 to $43.5\%$. The monomer compositions of 3-hydroxylalkanoates in mcl-PHA were also modified significantly in the recombinant P. putida enforcing the cloned phaCl gene.

Polyhydroxyalkanoate (PHA) Production Using Waste Vegetable Oil by Pseudomonas sp. Strain DR2

  • Song, Jin-Hwan;Jeon, Che-Ok;Choi, Mun-Hwan;Yoon, Sung-Chul;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1408-1415
    • /
    • 2008
  • To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of $PHA_{MCL}$ from waste vegetable oil. The proportion of 3-hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.