• Title/Summary/Keyword: pharmacological activity

Search Result 849, Processing Time 0.031 seconds

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

Anti-inflammatory effect of Seungmagalgeun-tang extract in human mast cells (Human mast cell에서 승마갈근탕(升麻葛根湯)의 항염증 효과에 대한 연구)

  • Keum, Joon-Ho;Seo, Yun-Soo;Kang, Ok-Hwa;Choi, Jang-Gi;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.7-11
    • /
    • 2013
  • Objectives : Seungmagalgeun-tang (SMGGT) is traditional medicine widely used for inflammatory disease and flu. But SMGGT exhibits potent anti-inflammatory activity with an unknown mechanism. To elucidate the molecular mechanisms of SMGGT water extract on pharmacological and biochemical actions in inflammation, we examined the effect of SMGGT on pro-inflammatory mediators in Phorbol-12-myristate-13-acetate (PMA)+A23187-stimulated mast cells. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to measure the activation of MAPKs. Cells were treated with SMGGT 1 h prior to the addition of 50 nM of PMA and $1{\mu}M$ of A23187. Cell viability was measured by MTS assay. The investigation focused on whether SMGGT inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and mitogen-activated protein kinases (MAPKs) in PMA+A23187-stimulated mast cells. Results : SMGGT has no cytotoxicity at examined concentration (100, 250, and $500{\mu}g/ml$). Also, gene expression of IL-6 and IL-8 in HMC-1 cells stimulated by PMA+A23187 was down regulated by SMGGT. Furthermore, SMGGT suppressed the PMA+A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal Kinase(JNK). But, SMGGT could not regulate phosphorylation of p38 MAPK. Conclusions : These results suggest that SMGGT has inhibitory effects on PMA+A23187-induced IL-6 and IL-8 production. These inhibitory effects occur through blockades on the phosphorylation of ERK and JNK.

Antioxidant and Anti-inflammatory Activities of Atractylodes japonica According to Extract Methods (백출 용매추출 방법에 따른 항산화 활성 및 항염증 효과)

  • Oh, Hee-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1543-1552
    • /
    • 2021
  • Atractylodes japonica has been widely used in a traditional Korean herbal medicine exerting various pharmacological activities such as diauretic action, asriction, anti-allergy, neuroprotective activity, anti-cancer, immunomodulation and gastrointestinal protective effect. This study was to investigate the antioxidant, nitric oxide and inflammatory cytokines production of A. japonica extract by water and 70% ethanol. DPPH and ABTS free radical scavenging activity were increased in a dose-dependent manners with both extracts and there was no difference with extract solvents. 70% ethanol extract of A. japonica showed a very strong inhibitory effect on NO production. Both extracts of A. japonica significantly reduce the expression of iNOS and COX-2 proteins involved in NO prodction. A. japonica extract by water and 70% ethanol inhibited LPS-induced proinflammatory cytokines such as IL-6 and IL-1b. In this study, 70% ethanol extract of A. japonica significantly suppresses LPS-induced NO and inflammatory cytokine production. Therefore it can be widely used to treat and improve inflammatory diseases.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

Antioxidant and anti-inflammatory activities of Lespedeza cuneata in Coal fly ash-induced murine alveolar macrophage cells

  • Abdul Wahab;Hwayong Sim;Kyubin Choi;Yejin Kim;Yookyeong Lee;Byungwook Kang;Yu Seong No;Dongyeop Lee;Inseo Lee;Jaehyeon Lee;Hwajun Cha;Sung Dae Kim;Evelyn Saba;Man Hee Rhee
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2023
  • Lespedeza cuneata (LC) is a perennial plant used in herbal medicine to treat numerous diseases, including prostatic hyperplasia, diabetes, early atherosclerosis, and hematuria. Reference collections of bioactive compounds of LC are crucial for the determination of their pharmacological properties. However, little is known regarding its anti-oxidative and anti-inflammatory effects in alveolar macrophage (MH-S) cells. This study examined whether LC can inhibit reactive oxygen species and Coal fly ash (CFA) induced inflammation in MH-S cells. The anti-oxidative effects of LC were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, anti-inflammatory effects were examined using nitric oxide (NO) assay, and cytotoxicity was analyzed using methyl thiazolyl tetrazolium assay. The expression of inflammatory cytokine genes was assessed through a reverse-transcription polymerase chain reaction. Our results revealed that LC exhibited high radical scavenging activity and a dose-dependent (7.8-1,000 ㎍/mL) inhibition of oxidation as compared to ascorbic acid and Trolox. It also inhibited CFA-induced NO production in MH-S cells. Moreover, it suppressed the CFA exposure-mediated expression of pro-inflammatory mediators and cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. These results suggest that LC is a potent antioxidant and anti-inflammatory agent that can be useful as a nutraceutical product.

Antibacterial Activity of Platycarya strobilacea Extract and Stability of the Extract-containing Cream (굴피나무 추출물의 항균 활성 및 추출물을 함유한 크림의 안정성 분석)

  • Yang, Hee-Jung;Kim, Eun-Hee;Kang, Sung-Tae;Park, Soo-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.170-175
    • /
    • 2009
  • The extract of Platycarya strobilacea is known to possess a wide range of pharmacological activities including anti-inflammatory, anti-fungal, and anti-cancer properties. We have reported that the ethyl acetate fraction of Platycarya strobilacea (PS-ET fraction) has high potential as an antioxidant agent (J. Soc. Cosmet. Scientists Korea 34(4) 275, 2008). In this study, antibacterial activity of the fraction and stability of the cream containing 0.2% PS-ET fraction were investigated for the application to cosmetics. Antibacterial activity of PS-ET fraction against various skin pathogenic bacteria (Propionibacterium acnes, Staphylococcus aureus, and Pityrosporum ovale) was measured by minimum inhibitory concentration (MIC). MIC values of PS-ET fraction on P. acnes, S. aureus, and P. ovale were 0.13%, 0.06% and 0.25%, respectively. The results showed that the antibacterial activity of the fraction was the highest in the S. aureus. For the stability evaluation, pH and viscosity of the cream containing 0.2% PS-ET fraction were measured. The results showed that pH changes of the cream containing PS-ET fraction was lower than the control cream without PS-ET fraction. And the PS-ET fraction could repress the decrease of viscosity of the cream against sunlight treatment. These results suggest that the fraction of Platycarya strobilacea has high potential as bactericide against the skin pathogenic bacteria and could be added to improve the stability of cosmetic products.

Hypoglycemic Effects of Fruits and Vegetables in Hyperglycemic Rats for Prevention of Type-2 Diabetes (고혈압쥐의 과일과 야채의 섭취에 따른 저혈당 효과)

  • Survay, Nazneen Shaik;Ko, Eun-Young;Upadhyay, Chandrama Prakash;Jang, Mi;Park, Se-Won;Lee, Dong-Ha;Jung, Yi-Sook;Yoon, Do-Young;Hong, Sae-Jin
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.850-856
    • /
    • 2010
  • An in vivo oral glucose tolerance test (OGTT) was performed on hyperglycemic male Sprague-Dawley rats to assess the effect of fruits and vegetables ($1g{\cdot}kg^{-1}$ body weight) on blood glucose levels (${\Delta}BGLs$) at different time intervals of 0, 5, 15, 30, 60, 90 and 120 min. The areas under glucose curve (${\Delta}AUCs$) were calculated at 120 min of OGTT by trapezoid method. Total phenolic content (TPC) and anti-oxidant activity (AOA) of fruits and vegetables were assayed in vitro by Folin Ciocalteu and DPPH (2, 2-diphenyl-1-picrylhydrazyl) methods, respectively. At the end of the experiment the correlations among the parameters TPC, AOA and ${\Delta}AUC$ was estimated by Pearson's correlations. Among fruit crops, tangerine, plum, grape and pear and among vegetables, blue leaf mustard, cabbage, chicory, broccoli and others exhibited significant hypoglycemic effects by reducing ${\Delta}BGLs$ with significant ${\Delta}AUC$. The effective ${\Delta}AUC$ ranged from $5548.2{\pm}462.1$ to $3823.3{\pm}282.0mg-min{\cdot}dL^{-1}$. The TPC and AOA ranged from $0.063{\pm}0.00$ to $0.913{\pm}0.14mg{\cdot}g^{-1}$ GAE and $01.05{\pm}0.08$ to $75.46{\pm}0.06%$, respectively. Overall, six fruits and fifteen vegetables exhibited higher TPC and one fruit and four vegetables exhibited higher AOA. There was a better correlation among TPC, AOA and ${\Delta}AUC$ of fruits and TPC & AOA of vegetables. We report that hypoglycemically significant fruits and vegetables investigated in this study have pharmacological importance which reduced ${\Delta}BGLs$ through insulin like activity and AOA in prevention of type-2 diabetes.

Process Optimization of Ginseng Berry Extract Fermentation by Lactobacillus sp. Strain KYH isolated from Fermented Kimchi and Product Analysis (발효 김치로부터 분리한 Lactobacillus sp. Strain KYH를 이용한 진생베리 추출물 최적 발효 공정 확립 및 생성물의 특성 분석)

  • Ha, Yoo-Jin;Yoo, Sun-Kyun;Kim, Mee Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The pharmacological effects of ginseng berry have been known to improve psychological function, immune activities, cardiovascular conditions, and certain cancers. It is also known that fermentation improves the bioavailability of human beneficial natural materials. Accordingly, we investigated the optimal fermentation conditions of ginseng berry extract with strain isolated from conventional foods. We also analyzed the fermentation product and its antioxidant activity. The bacterium isolated from fermented kimchi was identified as Lactobacillus sp. strain KYH. To optimize the process, fermentation was performed in a 5 L fermenter containing 3 L of ginseng berry extract at 200 rpm for 72 hr. Under optimized conditions, batch and fed-batch fermentations were performed. After fermentation, organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were evaluated. The optimum fermentation conditions were determined as pH 7.0 and a temperature of $30^{\circ}C$, respectively. After fermentation, the amounts and compositions of organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were altered. In comparing the distribution of ginsenosides with that before fermentation, the ginsenoside Re was a major product. However, amounts of ginsenosides Rb1, Rc, and Rd were reduced, whereas amounts of ginsenosides Rh1 and Rh2 increased. Total phenol content increased to 43.8%, whereas flavonoid content decreased to 19.8%. The DPPH radical scavenging activity and total antioxidant activity increased to 27.2 and 19.4%, respectively.

Effects of Compounds Isolated from an Ethanol Extract of the Sclerotium of Wolfiporia hoelen on Osteoblast Differentiation and Osteoclast Formation (복령 균핵의 에탄올 추출물에서 분리한 화합물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Sora Lee;Seokju Kim;Bowook Moon;Sik-Won Choi;Rhim Ryoo;Hyung Won Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.73-87
    • /
    • 2024
  • Wolfiporia hoelen (Fr.) Y.C.Dai & V. Papp, commonly known as Poria cocos, is a significant traditional herb used for medicinal and culinary purposes Asian and European countries. Many studies have confirmed that the main components of W. hoelen have pharmacological activities and thatits extract has been shown to affect bone metabolism. This study aimed to the potential of a 50% ethanol extract of the sclerotium of W. hoelen for preventing and treating bone diseases. The ethanol extract was systematically fractionated using n-hexane, dichloromethane, and ethyl acetate. The dichloromethane fraction caused an approximately 29% increase in alkaline phosphatase (ALP) differentiation activity in C2C12 cells compared to the control. Four compounds isolated from this active dichloromethane fraction were identified through instrumental analysis and literature references as 3α-dehydrotrametenolic acid, ergosterol, pachymic acid, and dehydrotumulosic acid. All four compounds were evaluated at increasing concentrations (1, 3, 10, 30, and 100 μM) to determine their effects on ALP differentiation activity in C2C12 cells and RANKL-induced inhibition activity in bone marrow macrophages (BMMs), with a concurrent assessment of cytotoxicity at these concentrations. At a concentration of 3 μM, dehydrotumulosic acid caused a 160% increase in ALP activity, 24% higher than in the BMP-2 control. BMMs treated with dehydrotumulosic acid at concentrations between 10 and 100 μM showed a substantial 15-86% decrease in RANKL-induced inhibition activity compared to the control, with distinct patterns of RANKL inhibition and cytotoxicity observed at 10 μM. These findings suggest that the ethanol extract from the sclerotium of W. hoelen has potential to modulate bone-cell differentiation, while highlighting the possible benefits of dehydrotumulosic acid isolated from the dichloromethane fraction of W. hoelen for preventing and treating osteoporosis.