• Title/Summary/Keyword: photocatalytic activities

Search Result 104, Processing Time 0.035 seconds

Photocatalytic Behavior of TiO2 Films : Thickness and Roughness Dependence

  • Kim, Hark Jin;Yoo, Seon Mi;Yu, Sora;Lee, Wan In
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Transparent $TiO_2$ films in various thicknesses were prepared by sol-gel and MOCVD method, respectively, and their photocatalytic activities in decomposing gaseous 2-propanol were evaluated. The surfaces and grain structures of the prepared films were characterized by FESEM, XRD, and AFM. It was found that the photocatalytic activities of $TiO_2$ films were greatly dependent on the film thickness and surface roughness: The photocatalytic activity increases with the increase of film thickness, while it decreases with the increase of surface roughness. We have proposed that these phenomena originate from the transfer of photogenerated electron and hole pairs from the bulk to the surface of $TiO_2$ film. Several experimental evidences supporting this mechanism have also been provided.

Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.621-626
    • /
    • 2009
  • Fe-AC/Ti$O_2$ photocatalysts were prepared by a sol-gel method. The photocatalytic properties of Fe-AC/Ti$O_2$ photocatalysts for the purification of water have been investigated. The samples were characterized by scanning electron microscopy (SEM), specific surface area (BET), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. It was found that the prepared Fe-AC/Ti$O_2$ composites have an excellent photocatalytic under visible light irradiation. A small amount of Fe ions in the AC/Ti$O_2$ composites could obviously enhance their photocatalytic activity. The high activities of the Fe-AC/Ti$O_2$ composites could be attributed to the results of the synergetic effects of the enhancement of the Fe element, the photocatalytic activity of Ti$O_2$, and the adsorption of AC.

Inconsistent Activities of Titanium Oxide Photocatalysts (산화티타늄 광촉매 활성의 비일관성)

  • Ryu, Jungho;Choi, Wonyong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2007
  • This study measured the photocatalytic activities of five $TiO_2$ samples commercially available in terms of the degradation rate of nine organic substrates. Efforts were made to correlate the activities with the properties of both catalysts and substrates but little correlation was found. The result clearly shows that the photocatalytic activities sensitively depend on the kind of the test substrates, which strongly supports the fact that the activity measured with one or two model compounds cannot represent the overall performance of a photocatalyst. Therefore, this multi-aspect and inconsistent activity of photocatalytic reaction should be fully understood prior to establish the standard protocol for the activity determination.

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.

Facile and Selective Synthesis of ZnO Hollow or Crumpled Spheres and Their Photocatalytic Degradation Activities

  • Choi, Yomin;Lee, Young-In
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.261-266
    • /
    • 2018
  • Hollow or bumpy ZnO structures with micrometer-size features have been investigated as photocatalysts for water purification due to their high surface area available for reaction with harmful organic molecules and relatively large size for easy separation after finishing the photocatalytic reaction. In this study, selective synthesis of ZnO hollow or crumpled microspheres was performed using a simple and versatile ultrasonic spray pyrolysis process with various zinc precursors. The morphologies, phases, specific surface areas, and optical properties of the microspheres were characterized using X-ray diffraction, scanning electronic microscopy, nitrogen adsorption-desorption isotherms, and UV-vis spectroscopy. In addition, the mechanism underlying the formation of different morphologies and their photocatalytic activities were systematically investigated.

Photocatalytic degradation of TCE using solar energy in POFR (플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해)

  • Jeong, Hee-Rok;Moon, Il;Joo, Hyun-Ku;Jun, Myung-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2002
  • The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

Photocatalytic activity of various $TiO_2$ nanostructures

  • Kim, Myoung-Joo;Kim, Kwang-Dae;Tai, Wei-Sheng;Seo, Hyun-Ook;Luo, Yuan;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.34-34
    • /
    • 2010
  • Activities of various $TiO_2$ nanostructures in photocatalytic decomposition of methylene blue and toluene were determined in order to shed light on the relationship between structures and photocatalytic activity. Commercially available P-25 samples were used in the present work. In addition, $TiO_2$ nanostructures were synthesized using atomic layer deposition (ALD). We show that change in the surface structure of $TiO_2$ upon variois surface treatments results in variation in photocatalytic activity. In particular, increase in the number of OH groups on the surface leads to the enhancement in photocatalytc activity. Surface OH groups increases adsorption reactivity of organic reactants, thereby increasing activity in photocatalytic decomposition of methylene blue and toluene.

  • PDF

Enhanced Visible Light Activity and Stability of TiO2 Nanopowder by co-doped with Mo and N

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1269-1274
    • /
    • 2012
  • A visible light responsive N, Mo co-doped $TiO_2$ were prepared by sol-gel method. X-ray diffraction, TEM, $N_2$ adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. Doping restrained the phase transformation from anatase to rutile and reduced the particle sizes. The band gap was much narrowed after N, Mo co-doping. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of doped $TiO_2$ were much higher than that of neat $TiO_2$. The photocatalytic stability of N, Mo co-doped $TiO_2$ was much better than that of N doped $TiO_2$.