• Title/Summary/Keyword: photochemical response analysis

Search Result 11, Processing Time 0.031 seconds

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

Evaluation through Photochemical Response Analysis on Growth Enhancing Effect of Decomposed Hatchery Waste Egg for Red Pepper (광화학적 반응 분석을 통한 부화장 폐달걀 분해 액비의 고추 생장촉진효과 평가)

  • Yoo, Sung Yung;Kang, Hong Gyu;Yoo, Jae Hong;Lee, Jeon Gyu;Shim, Myoung Yong
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • In this study, growth enhancing effect of hatchery waste egg decomposed liquid fertilizer in pepper plant cultivation through chlorophyll fluorescence (O-J-I-P) analysis. In a whole growth period, egg decomposed fertilizer treated pepper grew well than non treated plant, though it was not statistically significantly different. Amount of chlorophyll fluorescence of non treated plant was higher thant that of fertilizer treated plant. It is determined that eventually lead to increased photosynthesis. In this study, six parameters, Fo, ABS/RC, RC/ABS, TRo/RC, DI0/RC, and DF Total ABS were the important factors represent efficiency of photochemical responses of pepper plant treated with hatchery waste egg decomposed fertilizer.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

Photochemical Response Analysis on Different Seeding Date and Nitrogen (N) level for Maize (Zea mays L.) (옥수수의 파종시기 및 질소수준별 광화학적 반응 해석)

  • Park, So-Hyun;Yoo, Sung-Yung;Lee, Min-Ju;Park, Jong-Yong;Song, Ki-Tae;Kim, Tae Wan;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electron-transport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double N-fertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from $Q_A$ to $Q_B$ per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.

Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants (콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용)

  • Park, Sei-Joon;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Yoo, Sung-Yung;Park, So-Hyun;Kim, Tae-Gyeong;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2010
  • Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restricted irrigations of 200 and 50 ml water $pot^{-1}\;d^{-1}$ for 5 days for a control and a drought stress, respectively, and a sodium chloride solution of 200 mmol for 6 days for a salt stress. The intact leaves of the two cultivars after treatment were used to measure chlorophyll fluorescence parameters, maximum efficiencies of photosystem II photochemistry (Fv/Fm), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), $CO_2$ assimilation rate ($P_N$), and NPQ. Leaf water potentials of the two cultivars decreased from - 0.2 to - 0.8MPa by a drought treatment and from - 0.7 to - 1.7MPa by a salt treatment. Leaf water content of Shinpaldalkong 2 after a salt treatment was less decreased than that of Taekwangkong. $F_v/F_m$ values of both cultivars were not changed, while ${\Phi}_{PSII}$ and $P_N$ were decreased proportionally to leaf water potential decrease. The response of NPQ was occurred in Shinpaldalkong 2 under the drought and salt stresses. With Taekwangkong cultivar, only drought stress referred NPQ response. The cultivar differences on chlorophyll fluorescence parameters were found in the relationships between ${\Phi}_{PSII}$ and $P_N$, and between NPQ and ${\Phi}_{PSII}$. Although the positive relationships between ${\Phi}_{PSII}$ and $P_N$ were established on all treatments of both cultivars, the decreasing rate of ${\Phi}_{PSII}$ to $P_N$ was smaller in Shinpaldalkong 2 than Taekwangkong. The NPQ was increased according to the decrease of ${\Phi}_{PSII}$ by osmotic treatments in Shinpaldalkong 2. The complementary relationships between NPQ and ${\Phi}_{PSII}$ were well maintained at all treatments in Shinpaldalkong 2, while these relationships were lost at a salt treatment in Taekwangkong. Taken together, the results suggest that analysis of complementary relationships between ${\Phi}_{PSII}$ and NPQ could be more valuable and applicable for determining osmotic tolerance than single analysis of each parameter such as $F_v/F_m$, ${\Phi}_{PSII}$ and NPQ.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris (담수산 클로렐라(Chlorella vulgaris)의 수은 스트레스에 대한 엽록소형광 반응)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.705-715
    • /
    • 2013
  • The response of the freshwater microalga Chlorella vulgaris to mercuric ion ($Hg^{2+}$) stress was examined using chlorophyll a fluorescence image analysis and O-J-I-P analysis as a way to monitor the toxic effects of mercury on water ecosystems. The levels of photosynthetic pigments, such as chlorophyll a and b and carotenoids, decreased with increasing $Hg^{2+}$ concentration. The maximum photochemical efficiency of photosystem II(Fv/Fm) changed remarkably with increasing $Hg^{2+}$ concentration and treatment time. In particular, above $200{\mu}M\;Hg^{2+}$, considerable mercury toxicity was seen within 2 h. The chlorophyll a fluorescence transient O-J-I-P was also remarkably affected by $Hg^{2+}$; the fluorescence emission decreased considerably in steps J, I, and P with an increase in $Hg^{2+}$ concentration when treated for 4 h. Subsequently, the JIP-test parameters (Fm, Fv/Fo, RC/CS, TRo/CS, ETo/CS, ${\Phi}_{PO}$, ${\Psi}_O$ and ${\Phi}_{EO}$) decreased with increasing $Hg^{2+}$ concentration, while N, Sm, ABS/RC, DIo/RC and DIo/CS increased. Therefore, a useful biomarker for investigating mercury stress in water ecosystems, and the parameters Fm, ${\Phi}_{PO}$, ${\Psi}_O$, and RC/CS can be used to monitor the environmental stress in water ecosystems quantitatively.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

The Study on the High Nocturnal Concentration of Ground Level Ozone (야간 지표 고농도 오존에 관한 연구)

  • 김유근;홍정혜
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.545-554
    • /
    • 1998
  • The diurnal variation of O3 concentration shows two peaks, the first peak at noontime and the secondary peak at night. In order to show why the secondary peak, high nocturnal O3 concentration, occurs without sunlight which is a essential factor of a photochemical response, the O3 concentration, several weather elements and synoptic weather map were used for June∼September at 1995, 1996. The mean concentration of high nocturnal O3 concentration days is higher by 5.4 ppb than that of low nocturnal O3 concentration days. The nocturnal O3 concentration is higher than that of diurnal O3 concentration during high nocturnal O3 concentration days, at July, 1995 and June, 1996. The high nocturnal O3 concentration is related to low air pressure, high cloud cover and high wind speed. The correlation coefficient, r. between nocturnal O3 concentration and wind speed, pressure and cloud cover is 0.387, -0.218, and 0.194, respeftiviely. It is interesting that the O3 concentration increases at Pusan when the typhoon passes by. The same result showed at Taegu when the typhoon FAYE passed by. According to the analysis of nocturnal O3 concentration for June∼September at 1995 and 1996, it seems that the high nocturnal O3 concentration relates to the trough and cyclones passing by Pusan.

  • PDF

Evaluation of Street Tree Rootage by Transplanting Methods - Photochemical Response Analysis of Different Cultivation for Sorbus alnifolia - (가로수의 이식방법에 따른 수목 활착 평가 - 재배방법별 팥배나무의 광화학적 반응 해석 -)

  • Yoo, Sung Young;Park, So Hyun;Park, Chung In;Kim, Tae Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.132-138
    • /
    • 2015
  • Trees, cultivated in containers, are appropriate in soil deformation such as road sites with cutting and filling. This study tested the effectiveness of trees produced in containers for early rootage in street tree transplantation. For the study, Korean Mountain Ashes(Sorbus alnifolia) were used for experimental groups. The groups were categorized into three categories: trees cultivated in containers with mulching treatment(group A), trees cultivated outdoors with mulching treatment (group B), and trees cultivated in containers with weeding treatment(group C). Each group consisted of ten trees of the same size and transplanted to the experimental site. In order to compare each group's rootage, the study was carried out with the chlorophyll fluorescence method by the analysis of photochemical reaction. As a result of the study, group B had the lowest the maximum fluorescence amount(P). The amount of fluorescence increased by OJ transition of the process, and appeared to reduce the photosystem II electron transport efficiency. In photosystem II, electron transfer energy flux through photosystem I(RE1o/RC, RE1o/CS) was also reduced by more than 20% in group B. These results may imply that transplantation of container-cultivated trees with mulching treatment provides the most rapid rootage among the groups. The weeding treatment is also more effective than mulching treatment for rapid rootage of street trees.