• Title/Summary/Keyword: photoinhibition

Search Result 68, Processing Time 0.02 seconds

Genetic Analysis of Photoinhibition in Barley

  • Chun, Jong-Un
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2001
  • Winter cereals are acclimated during wintering, and thereafter their freezing resistance is increased. In order to analyze inheritance and heritabilities for photoinhibition of photosynthesis by high light intensity under low temperature, and to evaluate the relationship between low temperature-induced photoinhibition and winter survival, 4 parental half diallel crosses were used. The detached leaves of 7-8cm long from plants grown for 35 and 55 days were placed on wet filter paper and placed in trays at 5$^{\circ}C$ cold room with 1,200 $\mu$mol $m^{-2}$ $s^{-1}$ PPFD. Chlorophyll fluorescence was measured with a chlorophyll fluorescence system after dark adaptation for 30 min. The Fv/Fm of 35day old plants was reduced from 0.714 in the control leaves to 0.409 and 0.368 following photoinhibitory treatment of 6h and 8h and the CVs were increased from 0.8% to 22.2-22.3%. The Fv/Fm of 55-day old plants was reduced from 0.775 in the control leaves to 0.485 and 0.439 following photoinhibitory treatment of 10h and 12h, respectively. According to half diallel cross analysis, Reno and Dongbori 1 (highly resistant to photoinhibition) was dominant, but Oweolbori (susceptible to photoinhibition) was recessive, and photoinhibition showed partial dominance with highly additive gene action. Dongbori 1 showed the greatest GCA effects for photoinhibition, and GCA/SCA ratios (8.7-22.3 times) indicated that the additive variance for the character was more important. Winter survival in barley crosses was positively correlated with resistance to photoinhibition and significantly fitted by linear regression ($R^2$=0.751$^{**}$-0.779$^{**}$). The chlorophyll fluorescence measured by Fv/Fm has been found to be highly inheritable and very useful in evaluating relative levels of freezing resistance in barley.ley.

  • PDF

Effects of Antioxidants on the Photoinhibition in Panax ginseng C.A. Meyer (인삼의 광억제(Photoinhibition)에 대한 항산화제의 처리효과)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.232-235
    • /
    • 1993
  • We investigated the effect of antioxidants (ascorbate, glutathione, and sodium azide), which efEectively inhibited the chlorophyll bleaching of Panax ginseng CA Meyer under the high light intensity, treated by folilar wiping on the early stage of photosynthesis and transpiration of ginseng in the 5000 $\mu$mol photon.$m^{-2}$.$s^{-1}$. Ascorbate and glutathione, endogenous antioxidant, completely recovered ginseng from the photoinhibition, but sodium azide, synthetic quencher, showed negative effect. We assumed that endogenous antioxidants could be available to the protection of the leaf-burning phenomenon of ginseng.

  • PDF

Differential Recovery of Photosystem II Complex from Low-Temperature Photoinhibition in Plants with Different Chilling Sensitivity

  • Moon, Byoung-Yong;Norio Murata
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.39-44
    • /
    • 2000
  • To examine the chilling tolerance lipids, we compared the chilling susceptibility of photosystem II of wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids by being tansformed with cDNA for glycerol-3-phosphate acyltransferase from squash. For the purpose of studying on the functional integrity of photosystem II during low-temperature photoinhibition, the photochemical efficiency was measured as the ration of the maximun fluorescence of chlorophyll (Fv/Fm) of photosystem II. In parallel with an investigation on the transgenic plants, susceptibility of chilling-resistant species, such as spinah and pea, and of chilling-sensitive ones, such as squash and sweet potato, to low-temperature photoinhibition was also compared in terms of room temperature-induced chlorophyll fluorescence from photosystem II. When leaf disks from the two genotypes of tobacco plants were exposed to light at 5$^{\circ}C$, the transgenic plants showed more rapid decline in photochemical activity of photosysytme II than wild-type plants. When they were pretreated with lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the extent of photoinhibition was even more accelerated. More impottantly, they showed a comparable extent of photoinhibition in the presence of lincomycin, making a clear contrast to the discrepancy observed in the discrepancy observed in the absence of lincomycin. Restoration of Fv/Fm during recovery from low-temperature photoinhibition occurred more slowly in the transgenic tobacco plants than the wild-type. These findings are discussed in relation to fatty acid unsaturation of membrane phosphatidylglycerol. It appears that the ability of plants to rapidly regenerate the active photosystem II complex from might explain, in part, why chilling-resistant plants can toleratlow-temperature photoinhibition.

  • PDF

Dark-chilling Pretreatment Protects PSI from Light-chilling Damage

  • Kudoh, Hideki;Sonoike, Kintake
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.59-62
    • /
    • 2002
  • In chilling-sensitive plants, the donor side of Photosystem II is inhibited by the chilling treatment in the dark, while the acceptor side of Photosystem I is inhibited by the chilling under the moderate light. Since the addition of inhibitors of electron transfer from Photosystem II protects Photosystem I from chilling induced photoinhibition of Photosystem I, inhibition or down-regulation of Photosystem II activity in vivo may also protect Photosystem I from photoinhibition. It was revealed that dark-chilling pretreatment actually protected Photosystem I from photoinhibition. The results imply that down-regulation of Photosystem II under stress conditions may have a role to protect Photosystem I from photoinhibition.

  • PDF

RAPID RECOVERY OF PHOTOSYNTHESIS FROM PHOTOINHIBITION IS RELATED TO FATTY ACID UNSATURATION OF CHLOROPLAST MEMBRANE LIPIDS IN CHILLING-RESISTANT PLANTS

  • Moon, Byoung-Yong;Kang, In-Soon;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • The susceptibility of chilling-resistant spinach plants. and of chilling-sensitive squash plants to photoinhibition was compared in terms of the activity of photosystem II, in relation to the deuce of fatty acid unsaturation of chloroplast membrane lipids. From thylakoid membranes of the plants. monogalactosyl diacylgtycerol, digalactosyl diacylglycerol. sulfoquinovosyt diacylglycerol, and phosphatidylglycerol were seperated as major lipid classes. It was found that the content of cis-unsaturated fatty acids of phosphatidylglycerol was greater by 32% in spinach than that in squash. When leaf disks were exposed to light at 5$\circ$C, 15$\circ$C and 25$\circ$C, photochemical efficiency of photosystem II. measured as the ratio of the variable to the maximum fluorescence of chlorophyll, declined markedly in squash plants, as compared to spinach plants. When leaf disks were exposed to strong light in the presence of lincomycin, an inhibitor of protein synthesis in chloroplasts, photoinhibition was accelerated in the two types of plants. Moreover, lincomycin treatment abolished the differences in the degree of susceptibility to strong light, which had been observed between the two types of plants. When the extent of photoinhibition of photosystem II-mediated electron transport was compared in thylakoid membranes isolated from the two types of plants, there were no differences in the degree of inactivation of photosystem II activity. However, when intact leaf disks were exposed to strong light either at 10$\circ$C or at 25$\circ$C, and then were allowed to recover either at 17$\circ$C or at 25$\circ$C in dim light. chilling-resistant plants such as spinach and pea showed marked recovery from photoinhibition, in contrast to chilling-sensitive plants, such as squash and sweet potato. whose recovery was strongly dependent on the temperature. These findings are discussed in relation to the unsaturation of fatty acids in membrane phosphatidylglycerol. It appears that fatty acid unsaturation of membrane lipids accelerates the recovery of photosystem H from photoinhibition, without affecting the photo-induced inactivation process of photosystem II associated with photoinhibition.

  • PDF

Photodynamic Action by Endogenous Non-Chlorophyll Sensitizer As a Cause of Photoinhibition

  • Suh, Hwa-Jin;Kim, Chang-Sook;Jin Jung
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2000
  • As sunlight not always optimized for every terrestrial plant in terms of light quality, quantity and duration, some plants suffer detrimental effects of sunlight exposure under certain conditions. Photoinhibition of photosynthesis is a typical phenomenon representing harmful light effects, commonly observed in many photosynthetic organisms. It is generally accepted that functional, structural loss of photosystem II complex(PSII) is the primary event of photoinhibition. Accumulating data also suggest that singlet oxygen($^1$O$_2$) is the main toxic species directly involved in it. There are two different views on the specific site and mechanism of $^1$O$_2$ production in the photosynthetic membrane. One of them favors the PSII reaction center, where the primary charge pairs recombination occurs as a prerequisite for the generation of $^1$O$_2$, and the other inclines to photosensitized $^1$O$_2$ formation by a substance located outside PSII. This article describes how we, as the advocators of the latter concept, have arrived at the conclusion that $^1$O$_2$ immediately involved in PSII photodamage is largely generated from the Rieske center of the cytochrome b$_{6}$/f complex and diffuses into PSII, attacking the reaction center subunits.s.

  • PDF

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

Photosynthetic activity and photoinhibition in seedlings of red pepper (Capsicum annuum L.) grown from low dose $\gamma$-irradiated seeds

  • Kim, Jae-Sung;Lee, Young-Keun;Lee, Hae-Youn;Baek, Myung-Hwa;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.397-399
    • /
    • 2002
  • The seedling height, leaf width and leaf length of pepper increased in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than the control. Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. Fv/Fm was decreased with increasing illumination time by 50% after 4 hours, while Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the low dose $\gamma$ radiation increased resistance of plants to photoinhibition.

  • PDF

Stabilization of photosynthetic machinery against low-temperature photoinhibition by fatty acid unsaturation of membrane lipids in plants

  • Moon, Byoung-Yong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.68-82
    • /
    • 1999
  • CHilling tolereance of plants are closely correlated with the degree of fatty acid unsaturation of membrane lipids. We studied the effects of low-temperature photoinhibition on the photochemical efficiency of photosystem II in terms of fatty acid unsaturation of thylakoid membranes lipids isolated from chilling -sensitive plants and chilling -resistant ones. To directly test the chilling tolerance of photosynthetic machinery in relation to membrane lipids, we further compared wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids after being transformed with cDNA for glycerol-3-phophate acyltransferase from squash. The functional integrity of photosystem II during and recovery of photosynthesis from low-temperature photoinhibition will be discussed in connection with the degree of fatty acid unsaturation of chlorophast membranes lipids.

  • PDF

Photoinhibition and Recovery of Anacystis nidulans Adapted in Blue-Green Light

  • Young-Nam Hong
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • Photoinhibition and its recovery of spectrally adapted Anacystis nidulans were studied. Phycocyanin and Chl content and phycocyanin/Chl ratio were increased in cells grown under blue-green light compared with those grown in white light. Photosynthetic activities of white light and blue-green light grown cells were reduced by 50% after 15 min and 10 min of photoinhibitory light treatment (1.2 mmol·m-2s-1), respectively, largely due to the decline of PSII activities. However, their activities were recovered fully after 30 min incubation under weak light. Treatment of rifampicin and chloramphenicol magnified the photoinhibitory effects and suppressed the recovery with disappearance of susceptibility to photoinhibition and delayed the recovery process, indicating no significant differences in phosphorylation, dephosphorylation and protease activity between two cells. Therefore, it is suggested that the increased sensitivity of blue-green adapted cells might be attributed to the decline of protein synthesis, and phosphorylation-dephosphorylation of protein and protease activity might be involved in the recovery process.

  • PDF