• Title/Summary/Keyword: photon flux density

Search Result 88, Processing Time 0.023 seconds

Using Sunshine Duration to Estimate Photosynthetic Photon Flux Density at Taegu Korea (일조시간을 이용한 대구지방 광합성 광자선속밀도의 추정)

  • Suh, KyeHong
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The daily photosynthetic photon flux density incident on a horizontal surface was estimated with sunshine duration through daily global radiation at Taegu in Korea. The constant and coefficient of $\AA$ngstrom equation for global radiation were calculated as 0.1763 and 0.5012, respectively. The conversion factor from daily global radiation to daily photosynthetic photon flux density was determined as 2.2359.

  • PDF

Illuminance Distribution and Photosynthetic Photon Flux Density Characteristics of LED Lighting with Periodic Lattice Arrangements

  • Jeon, Hee-Jae;Ju, Kang-Sig;Joo, Jai-Hwang;Kim, Hyun-Gyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.16-18
    • /
    • 2012
  • LED lighting systems that combine lighting capability, emotional and physiological characteristics are required for lighting source and multifunctional applications. In this work, Simulation studies using optical analysis software packages, Light Tools, are presented. This is done to estimate the uniformity ratio of illuminance and photosynthetic photon flux density (PPFD) of the periodic 2D lattice arrangements, such as square, diamond, two-way bias quadrangular, hexagonal, and Kagome lattices, under the same transmissivity, absorptance and reflectivity. It has been found out that the two-dimensional Kagome lattice arrangement exhibited high uniformity ratio of illuminance and PPFD compared to other lattices. Accordingly, these results can be used to guide a design and improve the lighting environment which in turn would maximize the uniform distributions of illuminance.

Dust Scattering in Turbulent Media: Correlation between the Scattered Light and Dust Column Density

  • Seon, Kwang-Il;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  • PDF

Influence of Light on Biomass of Soybean in Narrow Strip Cropping of Oat, Corn, and Soybean

  • Van, Kyujung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2002
  • The strip intercropping system has used due to many advantages. Many researches supported these crop systems are usually equal to or better than monoculture crop systems in both total production and profit. There was no research to examine the important ecological factors in the competition between crops. A strip intercropping system composed of adjacent narrow strips of corn, soybean, and oat/legumes has been investigated in Iowa, USA. This study conducted to investigate why and how the differences in soybean yield are produced and affected by light, one of the microclimate, of the strip intercropping system. In height, the two rows of soybean closest to corn were taller than the two rows near the then-empty oat strip. The height of each crop decreased as the amount of light received increased. Weight of plant parts was lowest in row 1, nearest corn, and highest in row 4, next to the vacant oat strip. Daily photon flux density(PFD) increased with increasing distance from corn, with the highest value occurring on the edge next to the empty oat strip. Analyses of the relationship between light and biomass of soybean showed that all biomass measurements had a positive relationship to total PFD per day except height.

Acclimation of maximum quantum yield of PSII and photosynthetic pigments of Panax quinquefolius L. to understory light

  • Fournier, Anick R.;T.A., John;Khanizadeh, Shahrokh;Gosselin, Andre;Dorais, Martine
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • Forest-grown American ginseng (Panax quinquefolius L.) is exposed to daily and seasonal light variations. Our goal was to determine the effect of understory light changes on the maximum quantum yield of photosystem II, expressed as $F_v/F_m$, and photosynthetic pigment composition of two-year-old plants. Understory light photon flux density and sunfleck durations were characterized using hemispherical canopy photography. Our results showed that understory light significantly affected the $F_v/F_m$ of American ginseng, especially during the initial development of the plants when light levels were the highest, averaging 28 mol $m^{-2}d^{-1}$. Associated with low $F_v/F_m$ during its initial development, American ginseng had the lowest levels of epoxidation state of the xanthophyll cycle of the season, suggesting an active dissipation of excess light energy absorbed by the chlorophyll pigments. As photon flux density decreased after the deployment of the forest canopy to less than 10 mol $m^{-2}d^{-1}$, chlorophyll a/b decreased suggesting a greater investment in light harvesting pigments to reaction centers in order to absorb the fleeting light energy.

The Characteristics of Diurnal Changes in the Tissue-Water Relations of Pueraria thunbergiana (칡(Pueraria thunbergiana) 조직수분관계의 일변화 특성)

  • 박용목;최창렬
    • The Korean Journal of Ecology
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 1998
  • The diurnal changes of the stomatal conductance, transpiration and leaf water potential were measured in order to assess the water relations characteristics of Pueraria thunbergiana in August of 1995 and 1996. The results showed two different responses depending on the duration of rainless days. The microclimatic conditions were highly stressful on 2 August. Daily maximum temperature reached to $39.0{\circ}C$ and vapor pressure deficit was 3.55 KPa. During this time the leaf water potential decreased to -1.02 MPa and a marked reduction of stomatal conductance was shown. However, on 15 August the stomatal conductance increased with increment of photon flux density, and transpiration was highly maintained during the day time. Minimum leaf water potential was only -0.47 MPa in spite of high transpiration rate. Furthermore, on 15 August reduced leaf water potential during the day time was recovered rapidly with decrease of photon flux density, whereas recovery of leaf water potential on 2 August was delayed. However, reduced leaf water potential on 2 August was recovered untile the next dawn. Osmotic potential at turgor loss point of Pueraria thunbergiana on 2, 3 and 15 August was -1.79, -1.70 and -1.60 MPa, respectively. The vapor pressure deficit is more contributive to the regulation of stomatal conductance than leaf water potential.

  • PDF

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Growth Model of Leaf Lettuce Based on the Cumulative Photosynthetic Photon Flux Density (적산일사량에 따른 상추 생육모델)

  • 문보흠;이병일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • 채소는 다른 작물에 비해 생육기간이 매우 짧기 때문에 환경의 영향을 많이 받는다. 특히 환경이 제어되는 시설에서 양액재배를 할 경우에는 생육이 왕성하므로 노지에 비해 재배기간을 단축시킬 수 있으며, 근권부 양액제어나 지상부 환경제어를 통해 고품질 채소를 생산할 수 있는 장점이 있다. 따라서 빠른 생육을 제어하거나 예측할 수 없어 수확적기를 놓치면 외관적 품질이 현저히 떨어지고 질적 품질도 저하하여 소비자의 기호에 맞추기 힘들게 된다. (중략)

  • PDF

A finite Element Analysis on the discharge characteristics of $SF_6$ gas ($SF_6$ 가스 방전 특성의 유한요소해석)

  • 최승길;심재학;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.265-272
    • /
    • 2000
  • In this paper the corona discharge in SF$_{6}$ gas used as insulating material in lots o high voltage equipment, is simulated by finite element method with Flux-Corrected Transport(FCT) method. By application of proposed method the negative corona discharge characteristics in needle to plane electrode is analyzed with time step. For the accuracy of analysis the secondary electron emission by photon and ion are also considered as well as the accuracy of analysis the secondary electron emission by photon and ion are also considered as well as townsend first ionization and electron attachment. The calculated results show that the electric field intensity between anode and ion group is decreased as times go-by according to field distortion by those space charge. Accordingly the electron density is decreased strongly by the attatchment effect of SF6 gas so that the corona discharge becomes extinguished abruptly.y.

  • PDF