• 제목/요약/키워드: phytopathogenic fungi

검색결과 161건 처리시간 0.026초

Antifungal Activity of Serratia marcescens Culture Extracts against Phytopathogenic Fungi: Possibility for the Chitinases Role

  • Cho, Moo-Je;Lee, Sang-Yeol;Gal, Sang-Wan;Hwang, Jae-Ryoung;Yoon, Hae-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.209-214
    • /
    • 1992
  • Serratia marcescens co-cultured with various phytopathogenic fungi, including Rhizopus stolonifer, Helminthosporium allii, Pyricularia oryzae, Fusarium oxysporium and Collectothricom cassiicola, in an LB- agar medium containing 1.5% swollen chitin, significantly inhibitied fungal growth. Fungal hyphae grew rapidly outward from the culture dish center, but the hyphal extensions of the pathogenic fungi were significantly inhibited in a perimetric contact area with S. marcescens. This was especially evident in pathogenic fungi which have a high chitin content in their cell walls. The extracellular chitinase activities of S. marcescens were increased seven fold by the addition of 1.5% swollen chitin to the LB-broth, compared to chitinase activities in a culture medium without chitin. The type of induction was dependent on the various forms of chitin used. When the culture supernatant of S. marcescens or the chitinases of Streptomyces griceus purchased from Sigma Chemical Co., were incubated with the mycelium of F. oxysporium, the mycelium gradually burst as cultivation time progressed and completely lysed after incubation for 2 days. On the other hand, E. coli extract did not hydrolyze the F. oxysporium mycelium at all. These data showed that the chitinolytic activities of S. marcescens play important roles in the biochemical control of phytopathogenic fungi.

  • PDF

Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens

  • Cai, Shu-Ting;Chiu, Ming-Chung;Chou, Jui-Yu
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.69-77
    • /
    • 2021
  • The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.

A Novel ABC Transporter Gene ABC2 Involved in Multidrug Susceptibility but not Pathogenicity in Rice Blast Fungus, Magnaporthe grisea

  • Lee, Young-Jin;Kyosuke Yamamoto;Hiroshi Hamamoto;Ryoji Nakaune;Tadaaki Hibi
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.21-22
    • /
    • 2003
  • Fungicide treatment is the most important method for the control of plant diseases caused by phytopathogenic fungi. But fungicide resistant strains have appeared in many phytopathogenic fungi. Until now, molecular mechanisms of fungicide resistance such as mutation of target protein, overproduction of target enzyme and detoxification of fungicide have been designated. Recently, it was demonstrated that active efflux of fungicides mediated by ATP-binding cassette (ABC) transporters also contributes to fungicide resistance in several filamentous fungi, such as Aspergillus nidulans, Penicillium digitatum and Botrytis cinerea.(중략)

  • PDF

식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구 (Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi)

  • 김희숙;김지윤;이송민;박혜정;이상현;장정수;이문현
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.603-613
    • /
    • 2019
  • 본 연구에서 부산, 창원, 제주도 일대에서 채취한 토양으로부터 분리한 균주를 이용하여 식물 병원성 곰팡이에 대해서 길항작용을 나타내는 것을 확인하였으며, 또한 분리 균주의 경우 세균성 균주에 대해서도 길항작용을 나타내는 것을 확인하였다. 이러한 길항작용은 Bacillus 속이 생산하는 2차 대사산물인 siderophore, 항생물질, 세포 외 효소 활성 등에 의해서 식물 병원성 곰팡이에 대한 길항작용을 나타내는 것으로 보이며, 특히 분리 균주로부터 생산되는 세포 외 효소는 식물 병원성 곰팡이의 세포벽에 용균작용 일으킴에 따라 세포벽을 분해하여 식물 병원성 곰팡이의 생장을 저해할 것으로 생각된다. 또한 질소 고정능 및 IAA 생성능을 통해 식물 생장 촉진 및 식물 병원성 곰팡이 성장을 억제시킬 수 있는 생물학적 제제로서 식물재배에 도움을 줄 것으로 기대된다. 최종 선별된 Bacillus subtilis ANGa5, Bacillus aerius ANGa25, Bacillus methylotrophicus ANGa27를 이용하여 식물 병원성 곰팡이 방제 및 식물 생장촉진활성을 가지는 새로운 생물학적 제제로서 이용 가능성을 제시한다.

식물병원 진균 균주의 살균증류수 저장법 (Storage of Phytopathogenic Fungal Cultures in Sterile Distilled Water)

  • 이종규;최경자;김병섭;조광연
    • 한국식물병리학회지
    • /
    • 제10권2호
    • /
    • pp.144-147
    • /
    • 1994
  • About 450 phytopathogenic fungal cultures were stored in sterile distilled water ar room temperature by the sterile water storage method, which has been known as a simple, convenient, and long-term storage method of microorganisms. After 12 months, viability and pathogenicity of the stored isolates were tested. Among 205 tested, 175 isolates (84.5%) survived. Of these, Rhizoctonia solani, Botrytis cinerea, Pyricularia oryzae, Phytophthora infestans, and Sclerotinia sclerotiorum showed relatively lower survival rate; 92%, 74.1%, 62.5%, 45.8%, and 30%, respectively. Twenty seven isolates belonging to seven important phytopathogenic fungi were tested for pathogenicity, and all isolates tested maintained pathogenicity until at least 12 months after storage.

  • PDF

Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi

  • Lim, Seong Mi;Yoon, Mi-Young;Choi, Gyung Ja;Choi, Yong Ho;Jang, Kyoung Soo;Shin, Teak Soo;Park, Hae Woong;Yu, Nan Hee;Kim, Young Ho;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제33권5호
    • /
    • pp.488-498
    • /
    • 2017
  • The aim of this study was to identify volatile and agardiffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n-butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin) were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

Antifungal Activity of Five Plant Essential Oils as Fumigant Against Postharvest and Soilborne Plant Pathogenic Fungi

  • Lee, Sun-Og;Choi, Gyung-Ja;Jang, Kyoung-Soo;Lim, He-Kyoung;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.97-102
    • /
    • 2007
  • A total of 39 essential oils were tested for antifungal activities as volatile compounds against five phytopathogenic fungi at a dose of 1 ${\mu}l$ per plate. Five essential oils showed inhibitory activities against mycelial growth of at least one phytopathogenic fungus. Origanum vulgare essential oil inhibited mycelial growth of all of the five fungi tested. Both Cuminum cyminum and Eucalyptus citriodora oils displayed in vitro antifungal activities against four phytopathogenic fungi except for Colletotrichum gloeosporioides. The essential oil of Thymus vulgaris suppressed the mycelial growth of C. gloeosporioides, Fusarium oxysporum and Rhizoctonia solani and that of Cymbopogon citratus was active to only F. oxysporum. The chemical compositions of the five active essential oils were determined by gas chromatography-mass spectrometry. This study suggests that both E. citriodora and C. cyminum oils have a potential as antifungal preservatives for the control of storage diseases of various crops.

Fungicidal Activities of 51 Fruit-Derived Extracts in vivo against Six Phytopathogenic Fungi

  • Lee, Hoi-Seon;Lee, Seon-Woo;Cho, Kwang-Yun;Kim, Moo-Key;Ahn, Young-Joon
    • Journal of Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.147-153
    • /
    • 2001
  • Methanol extracts from 51 fruits were tested for their fungicidal activities against six phytopathogenic fungi in a greenhouse. The efficacy varied with both the plant pathogen and fruit species used. At 10 and 5 mg/pot, methanol extracts of Poncirus trifoliata peel and seed gave over 80% control values against Pyricularia grisea, and strong fungicidal activities against Rhizoctonia solani were showed from the extracts of Citrus paradisi peel and Punica granatum leaf. In a test with Botrytis cinerea at 5 mg/pot, the extracts of C. sinensis seed and D. kaki leaf produced potent fungicidal activities, and the extracts of C. crenata peel and leaf, Ch. sinensis seed, P. trifoliata peel, and Z. jujuba leaf had strong fungicidal activities. At 5 mg/pot, strong fungicidal activities were produced in the extracts of P. trifoliata peel and seed against Phytophthora infestans and in the extracts of P. ussriensis var. macrostipes fruit and seed, C. crenata peel, C. crenata leaf, C. paradisi peel, P. trifoliata peel, P. granatum peel, and Z. jujuba leaf against Puccinia recondita. In a test with E. graminis, potent activities at 10 mg/pot were produced from the extracts of Ch. sinensis seed, C. sinensis seed, P. trifoliata leaf, P. ussriensis var. macrostipes fruit and seed, and Vitis vinifera seed. In the control effect of seven extracts against B. cinerea strains resistant to carbendazim, procymidone, and diethofencarb, extracts of C. crenata peel and leaf, Ch. sinensis seed, and P. trifoliata peel were highly effective against all strains of B. cinerea. Furthermore, potent fungicidal activities were produced from the extracts of C. sinensis seed and D. kaki leaf against the SSR, SRR, and RRS, and Z. jujuba leaf against the SSR and RRS strains. As a naturally occurring fungicide, these fruit-derived materials could be useful as new fungicidal products against phytopathogenic fungi.

  • PDF

국내산 식물체 추출물의 여섯 가지 주요 식물병원권에 대한 살균활성 (Fungicidal Activity of Domestic Plant Extracts against Six Major Phytopathogenic Fungi)

  • 박일권;이상길;박지두;신상철;안용준
    • 농약과학회지
    • /
    • 제7권2호
    • /
    • pp.83-91
    • /
    • 2003
  • 118 종 국내산 식물체의 에탄올 추출물을 대상으로 기주식물상의 온실실험조건에서 6 종의 주요 식물병원균에 대해 방제효과를 조사한 결과 살균효과는 식물의 종류 및 채집부위에 따라 커다란 차이를 보였다. 118 종 207 샘플을 2,000ppm 농도로 처리하였을 때 두 종 이상의 병원균에 90% 이상의 방제효과를 나타 낸 식물체는 측백나무 잎, 육계나무 잎, 비목나무 수피 및 잎, 잣나무 목부, 헛개나무 목부, 모감주나무 수피, 때죽나무 목부, 동백나무 잎, 그리고 빗죽이나무 잎이었다. 특히 헛개나무 목부 추출물은 여러 식물병원 균에 대하여 강함 살균효과를 나타내어 방제에 크게 이용할 수 있을 것으로 기대되었다.

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon;Kim, Kyoung-Su;Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Seung-Bin;Jung, Moo-Young;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.376-380
    • /
    • 2009
  • Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.