• Title/Summary/Keyword: piecewise constant

Search Result 68, Processing Time 0.023 seconds

INVERSE PROBLEM FOR A HEAT EQUATION WITH PIECEWISE-CONSTANT CONDUCTIVITY

  • Gutman, S.;Ramm, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.651-661
    • /
    • 2010
  • We consider the inverse problem of the identification of a piecewise-constant conductivity in a bar given the extra information of the heat flux through one end of the bar. Our theoretical results show that such an identification is unique. This approach utilizes a "layer peeling" argument. A computational algorithm based on this method is proposed and implemented. The advantage of this algorithm is that it requires only 3D minimizations irrespective of the number of the unknown discontinuities. Its numerical effectiveness is investigated for several conductivities.

Further Results on Piecewise Constant Hazard Functions in Aalen's Additive Risk Model

  • Uhm, Dai-Ho;Jun, Sung-Hae
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.403-413
    • /
    • 2012
  • The modifications suggested in Uhm et al. (2011) are studied using a partly parametric version of Aalen's additive risk model. A follow-up time period is partitioned into intervals, and hazard functions are estimated as a piecewise constant in each interval. A maximum likelihood estimator by iteratively reweighted least squares and variance estimates are suggested based on the model as well as evaluated by simulations using mean square error and a coverage probability, respectively. In conclusion the modifications are needed when there are a small number of uncensored deaths in an interval to estimate the piecewise constant hazard function.

Piecewise-Constant Method for Angular Approximation for the Second-Order Multidimensional Neutron Transport Equations (다차원 2계 중성자 수송방정식의 방향근사를 위한 영역상수법)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.46-52
    • /
    • 2007
  • The piecewise constant angular approximation is developed to replace the conventional angular quadrature sets in the solution of the second-order, multi-dimensional $S_{N}$ neutron transport equations. The newly generated quadrature sets by this method substantially mitigate ray effects and can be used in the same manner as the conventional quadrature sets are used. The discrete-ordinates and the piecewise-constant approximations are applied to both the first-order Boltzmann and the second-order form of neutron transport equations in treating angular variables. The result is that the mitigation of ray effects is only achieved by the piecewise-constant method, in which new angular quadratures are generated by integrating angle variables over the specified region. In other sense, the newly generated angular quadratures turn out to decrease the contribution of mixed-derivative terms in the even-parity equation that is one of the second-order neutron transport equation. This result can be interpreted as the entire elimination or substantial mitigation of ray effect are possible in the simplified even-parity equation which has no mixed-derivative terms.

S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS FOR THE SYSTEMS OF DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT IN BANACH SPACES

  • Lee, Hyun Mork;Jang, Hyun Ho;Yun, Chan Mi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2018
  • By using of the Banach fixed point theorem, the theory of a strongly continuous semigroup of operators and resolvent operator, we investigate the existence and uniqueness of S-asymptotically ${\omega}-periodic$ mild solutions for some differential (integrodifferential) equations with piecewise constant argument when specially ${\omega}$ is an integer.

A Reference Trajectory Generation Method with Piecewise Constant Acceleration Condition for the Curved Flight of a Drone (드론의 곡선 비행을 위한 구간별 등가속 조건의 기준 궤적 생성 방법)

  • Jang, Jong Tai;Gong, Hyeon Cheol;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • This paper describes a three-dimensional reference trajectory generation method for giving commands to an unmanned air vehicle (UAV). The trajectory is a set of consecutive curves with constant acceleration during each interval and passing through via-points at specified times or speeds. The functional inputs are three-dimensional positions and times (or speeds) at via-points, and velocities at both boundaries. Its output is the time series of position values satisfying the piecewise constant acceleration condition. To be specific, the shape of the trajectory, known as the path, is first represented by splines using third degree polynomials. A numeric algorithm is then suggested, which can overcome the demerits of cubic spline method and promptly generate a piecewise constant acceleration trajectory from the given path. To show the effectiveness of the present scheme, trajectory generation cases were treated, and their speed calculation errors were evaluated.

Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels (삼각형 패널 상에 선형적으로 분포된 다이폴 강도를 갖는 패널법의 정식화)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.114-123
    • /
    • 2020
  • A high-order potential-based panel method based on Green's theorem, with piecewise-linear dipole strength on triangular panels, is formulated for the analysis of potential flow around a three-dimensional wing. Previous low-order panel methods adopt square panels with piecewise-constant dipole strength, which results in inherent errors. Square panels can not represent a high curvature lifting body, such as propellers, since the four vertices of the square panel do not locate at the same flat plane. Moreover the piecewise-constant dipole strength induces inevitable errors due to the steps in dipole strength between adjacent panels. In this paper a high-order panel method is formulated to improve accuracy by adopting a piecewise linear dipole strength on triangular panels. Firstly, the square panels are replaced by triangular panels in order to increase the geometric accuracy in representing the shape of the object with large curvature. Next, the step difference of the dipole strength between adjacent panels is removed by adopting piecewise-linear dipole strength on the triangular panels. The calculated results by the present method is compared with analytical ones for simple non-lifting geometries, such as ellipsoid. The results for an elliptic wing with zero thickness at finite angle of attack are compared with Jordan's results. The comparison shows reasonable agrements for the both lifting and non-lifting bodies.

Flow Analysis around a Wing Section by a Piecewise Linear Panel Method (부분선형 패널법을 이용한 2차원 날개단면 주위 유동 해석)

  • Park, Gi-Duck;Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.380-386
    • /
    • 2015
  • Panel methods are useful tools for analyzing fluid-flow around a wing section. It has the advantage of fast and accurate calculation, compared to other CFD Methods such as RANS solvers. This paper suggests a piecewise linear panel method in order to improve accuracy of existing panel methods by changing the piecewise constant singularity strength to linear singularity strength(for dipole strength). The piecewise linear panel method adopts the linear distribution of singularity strength, while control point is located at the node of each panel. Formulation of the piecewise linear panel method is given, and some calculation results are shown for typical wing sections.

Time Optimal Control of the Nuclear Reactor Using the Maximum Principle (Mazimum Principle을 이용한 원자로의 시간 최적제어)

  • 곽은호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.27-31
    • /
    • 1974
  • The maximum principle of Pontryagin provides the celebrated method to obtain the optimum control switching time and switching points on the nuclear reactor. The control trajectories transfered from its initial state to the target state are optimized based on time optioptimal control method with the given reactor parameters and the piecewise constant input values.

  • PDF

An Unified Method of Finding the Inverse of a Matrix with Entries of a Linear Combination of Piecewise Constant Functions (각 항들이 구간 일정 함수의 선형 결합으로 표현된 행렬의 역을 구하는 방법)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.606-613
    • /
    • 1988
  • This paper presents an unified method of obtaining the inverse of a matrix whose elements are a linear combination of piecewise constant functions. We show that the inverse of such a matrix can be obtained by solving a set of linear algebraic equations.

  • PDF

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav;Kumar, Shailendra
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.885-900
    • /
    • 2015
  • This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.