• Title/Summary/Keyword: piecewise constant parameters

Search Result 7, Processing Time 0.022 seconds

IDENTIFIABILITY FOR COMPOSITE STRING VIBRATION PROBLEM

  • Gutman, Semion;Ha, Jun-Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1077-1095
    • /
    • 2010
  • The paper considers the identifiability (i.e., the unique identification) of a composite string in the class of piecewise constant parameters. The 1-D string vibration is measured at finitely many observation points. The observations are processed to obtain the first eigenvalue and a constant multiple of the first eigenfunction at the observation points. It is shown that the identification by the Marching Algorithm is continuous with respect to the mean convergence in the admissible set. The result is based on the continuous dependence of eigenvalues, eigenfunctions, and the solutions on the parameters. A numerical algorithm for the identification in the presence of noise is proposed and implemented.

Time Optimal Control of the Nuclear Reactor Using the Maximum Principle (Mazimum Principle을 이용한 원자로의 시간 최적제어)

  • 곽은호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.27-31
    • /
    • 1974
  • The maximum principle of Pontryagin provides the celebrated method to obtain the optimum control switching time and switching points on the nuclear reactor. The control trajectories transfered from its initial state to the target state are optimized based on time optioptimal control method with the given reactor parameters and the piecewise constant input values.

  • PDF

The Estimation of Parameters to minimize the Energy Function of the Piecewise Constant Model Using Three-way Analysis of Variance (3원 변량분석을 이용한 구분적으로 일정한 모델의 에너지 함수 최소화를 위한 매개변수들 추정)

  • Joo, Ki-See;Cho, Deog-Sang;Seo, Jae-Hyung
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.846-852
    • /
    • 2012
  • The result of imaging segmentation becomes different with the parameters involved in the segmentation algorithms; therefore, the parameters for the optimal segmentation have been found through a try and error. In this paper, we propose the method to find the best values of parameters involved in the area-based active contour method using three-way ANOVA. The segmentation result applied by three-way ANOVA is compared with the optimal segmentation which is drawn by user. We use the global consistency rate for comparing two segmentations. Finally, we estimate the main effects and interactions between each parameter using three-way ANOVA, and then calculate the point and interval estimate to find the best values of three parameters. The proposed method will be a great help to find the optimal parameters before working the motion segmentation using piecewise constant model.

Transient diffusion approximation for $M/G/m/N$ queue with state dependent arrival rates

  • Shin, Yang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.715-733
    • /
    • 1995
  • We present a transient queue size distribution for $M/G/m/N$ queue with state dependent arrival rates, using the diffusion process with piecewise constant diffusion parameters, with state space [0, N] and elementary return boundaries at x = 0 and x = N. The model considered here contains not only many basic model but the practical models such as as two-node cyclic queue, repairmen model and overload control in communication system with finite storage buffer. For the accuracy check, we compare the approximation results with the exact and simulation results.

  • PDF

Analytic Investigation of Multi-Component Elastic Cables under 3-D Concentrated Static Loads (3차원 정적 집중하중을 받는 복합 탄성 케이블의 정적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.193-198
    • /
    • 2014
  • An elastic cable with piecewise constant properties under the action of concentrated static loads is studied analytically. Analytic solutions for catenary cables are combined at the discontinuous points caused by the discontinuous elastic properties or concentrated loads. The application of the boundary conditions at both ends of the multi-component cable results in three algebraic non-linear equations for three unknown parameters, which are determined numerically. The solutions for the shape, tension, elongation, and cross-sectional contraction of the cable are expressed in closed forms. Some examples are given for cases of two- and three-dimensional loads.

Robust Control of Multi-Echelon Production-Distribution Systems with Limited Decision Policy (II)- Numerical Simulation-

  • Jeong, Sang-Hwa;Oh, Yong-Hun;Kim, Sang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.380-392
    • /
    • 2000
  • A typical production-distribution system consist of three main echelons representing the retailer, distributors, and a factory each with an on-site warehouse. The system is sufficiently general and realistic to represent many industrial situations. However, decision functions and parameters have been selected to apply particularly to the production and distribution of consumer durables. The flows included in the model are materials, orders, and those information flows needed to support the material and order-rate decisions. In this work, a realistic production-distribution system has been used as a basic model, which consists of three sectors: retailer, distributor, and factory. That system is a nonlinear 25th-order continuous system interconnected between the echelons. Using a modern control algorithm, a typical multi-echelon production-distribution system using a dynamic controller is numerically simulated in the nominal plant and in the perturbed plant when the piecewise constant manufacturing decision is limited by a factory manufacturing upper-limit due to capital equipment, manpower, and factory lotsize.

  • PDF

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF