• Title/Summary/Keyword: pigeonpea

Search Result 8, Processing Time 0.029 seconds

Prevalence of Phytophthora Blight of Pigeonpea in the Deccan Plateau of India

  • Sharma, M.;Pande, S.;Pathak, M.;Rao, J. Narayana;Kumar, P. Anil;Reddy, D. Madhusudan;Benagi, V.I.;Mahalinga, D.M.;Zhote, K.K.;Karanjkar, P.N.;Eksinghe, B.S.
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.309-313
    • /
    • 2006
  • Phytophthora blight(PB), caused by Phytophthora drechsleri f. sp. cajani is the third potentially important disease of pigeonpea in the Deccan Plateau(DP) of India after wilt and sterility mosaic. In the rainy-season of 2005, an outbreak of PB was seen throughout DP. To quantify the incidence and spread of the disease, a systematic survey was conducted in the major pigeonpea growing regions of DP during the crop season 2005. Attempts were made to determine the effect of cropping systems on the PB development and identify resistant cultivars, if any, grown by farmers and on research farms. Widespread incidence of PB was recorded on improved, and or local cultivars grown in different intercropping systems. Majority of improved cultivars grown at research farms were found susceptible to PB(>10% disease incidence). Pigeonpea intercropped with groundnut, black gram and coriander had less disease incidence(${\leq}10%$). Three wilt and SM resistant pigeonpea cultivars KPL 96053, ICPL 99044, and ICPL 93179 were found resistant(<10%) to PB as well. However, their resistance to PB needs confirmation under optimum disease development environments.

Chemical Control of Fusarium Wilt of Pigeonpea (Pigeonpea의 Fusarium 시들음병에 대한 화학적 방제)

  • Singh, Rajesh
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.416-423
    • /
    • 1998
  • The fungicidal effects of four commercial fungicides, two herbicides and two insecticides have been examined on Fusarium udum, causing wilt disease of pigeonpea in vitro and in vivo. The fungicides Bavistin and MeMc inhibited the growth of the test pathogen completely at 8 and 30 ppm. The herbicide Butachlore inhibited the growth of the test pathogen up to 80.4%. The insecticides, Ekalux and Thiodane partially inhibited the radial growth at 1000 ppm. In unsterilized and sterilized soil MeMc was most effective in controlling the disease in comparison to Bavistin and Ekalux. Maximum rhizosphere fungal population was recorded in MeMc amended soil and minimum in case of Bavistin.

  • PDF

Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

  • Daspute, Abhijit;Fakrudin, B.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN $7_{414}$) and a repulsion phase marker (IABTPPN $7_{983}$) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN $7_{983}$, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN $7_{414}$ did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN $7_{983}$ (P<0.0001) and IABTPPN $7_{414}$ (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in $F_2$ population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea.

Biological Control of Fusarium Wilt Disease of Pigeonpea

  • Rajesh Singh;B.K. Singh;R.S. Upadhyay;Bharat Rai;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.279-283
    • /
    • 2002
  • Biological control of Fusarium udum causing wilt disease of pigeonpea was studied in vitro, as well as, in vivo. Aspergilluspavus, Anergillus niger, Bacilius licheniformis (strain-2042), Gliocladium virens, Peniciliium citrimum, and Trichoderma harzianum, which were found to be the most potent ones in inhibiting the radial colony growth of the test pathogen, were used as biological control by amending their inocula at diffeyent concentrations in pots and in pathogen-infested soil in the fields. Maximum reduction of the wilt disease was observed with G. vireos both in pots and in the fields. The population of E. udum was found to be markedly reduced when the antagonists were applied in the soil. The study establishes that G. virens can be exploited for the biological control of wilt disease at field level.

Inheritance of Pigeonpea Sterility Mosaic Disease Resistance in Pigeonpea

  • Daspute, Abhijit;Fakrudin, B.;Bhairappanavar, Shivarudrappa B.;Kavil, S.P.;Narayana, Y.D.;Muniswamy, Muniswamy;Kaumar, Anil;Krishnaraj, P.U.;Yerimani, Abid;Khadi, B.M.
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • A comprehensive study was conducted using PPSMV resistant (BSMR 736) and susceptible (ICP 8863) genotypes to develop a segregating population and understand the inheritance of PPSMV resistance. The observed segregation was comparable to 13 (susceptible): 3 (resistant). Hence, the inheritance was controlled by two genes, SV1 and SV2, with inhibitory gene interaction.

Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.]

  • Kumar, S.Manoj;Syamala, D.;Sharma, Kiran K.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • Optimal protocol for efficient genetic transformation has been defined to aid future strategies of genetic engineering in pigeon pea with agronomically important genes. Transgenic pigeonpea plants were successfully produced through Agrobacterium tumefaciens-mediated genetic transformation method using cotyledonary node explants by employing defined culture media. The explants were co-cultivated with A. tumefaciens strain C-58 harboring the binary plasmid, pCAMBIA-1301 [con-ferring $\beta$-glucuronidase(GUS) activity and resistance to hygromycin] and cultured on selection medium (regeneration medium supplemented with hygromycin) to select putatively transformed shoots. The shoots were then rooted on root induction medium and transferred to pots containing sand and soil mixture in the ratio of 1:1. About 22 putative TO transgenic plants have been produced. Stable expression and integration of the transgenes in the putative transgenics were confirmed by GUS assay, PCR and Southern blot hybridization with a transformation efficiency of over 45%. Stable integration and expression of the marker gene has been confirmed in the TO and T1 transgenics through PCR, and Southern hybridization.

Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanus cajan) and Efficacy of Associated SSR Markers

  • Singh, Deepu;Sinha, B.;Rai, V.P.;Singh, M.N.;Singh, D.K.;Kumar, R.;Singh, A.K.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Inheritance of resistance to Fusarium wilt (FW) disease caused by Fusarium udum was investigated in pigeonpea using four different long duration FW resistant genotypes viz., BDN-2004-1, BDN-2001-9, BWR-133 and IPA-234. Based on the $F_2$ segregation pattern, FW resistance has been reported to be governed by one dominant gene in BDN-2004-1 and BDN-2001-9, two duplicate dominant genes in BWR-133 and two dominant complimentary genes in resistance source IPA-234. Further, the efficacy of six simple sequence repeat (SSR) markers namely, ASSR-1, ASSR-23, ASSR-148, ASSR-229, ASSR-363 and ASSR-366 reported to be associated with FW resistance were also tested and concluded that markers ASSR-1, ASSR-23, ASSR-148 will be used for screening of parental genotypes in pigeonpea FW resistance breeding programs. The information on genetics of FW resistance generated from this study would be used, to introgress FW resistance into susceptible but highly adopted cultivars through marker-assisted backcross breeding and in conventional breeding programs.