• Title/Summary/Keyword: pile depth

Search Result 367, Processing Time 0.02 seconds

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang;Young-sang Kim;Gyeongo Kang
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.165-179
    • /
    • 2023
  • This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

A Study on the Stability of Group Piles Installed in the Deep Sea to the Seaquake (해진에 대한, 심해에 설치된 군말뚝의 안정성에 관한 연구)

  • 최용규;남문석;정두환
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.31-42
    • /
    • 2000
  • In this study, the stability of group piles installed in deep sea to the seaquake was studied by performing the calibration chamber model tests for open-ended pipe piles, grouted piles under soil plug and close-ended piles installed in the simulated deep sea. For each case (a single pile, 2-pile and 4-pile groups), series of seaquake tests were performed. While, during the simulated seaquake, the compressive capacity of the single open-ended pile depended on pile penetration depth(=7m), were found to be stable. But, a single grouted pile with penetration depth of 13m kept "mobility" state, the one with penetration depth of 20m was stable and grouted pile groups with penetration depth of 7m were stable regardless of pile penetration depth. By grouting soil plug of open-ended piles and soil under the pile toe of open-ended pipe piles installed in the deep sea, failure of soil plugging was prevented. Thus, close-ended piles were more stable than open-ended pile against the seaquake motionake motion.

  • PDF

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

Pile Depth Prediction by Magnetic Logging (자력검층을 이용한 파일 심도 예측)

  • 김진후
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.231-236
    • /
    • 2000
  • In order to predict depth of the pile forward modeling and inversion of magnetic logging data was conducted by using a finite line of dipoles model. The horizontal component as well as the vertical component of magnetic fields can be measured in the borehole, and the magnetic anomalies can be obtained by subtracting the Earth's magnetic field from the measurement. The magnetic anomalies of the pile are considered as vector sum of induced magnetization due to the Earth's magnetic field and remnant magnetization possessed by steel strings in the pile. The magnetic anomalies are used as input data for inversion from which the length, the magnetic moment per unit length, and the dip angle of the pile can be obtained. From the inversion of synthetic noisy data, and the data obtained from the field model test it is found that the driving depth of the pile can be determined as close to the order of measuring interval (5∼10㎝). It is also found that the resultant magnetic anomalies due to an individual steel string in the pile are almost same as those due to a group of steel strings located at the center of the pile. The magnetic logging method also can be used for locating reinforced bars, pipes, and steel casings.

  • PDF

Response of passively loaded pile groups - an experimental study

  • Al-abboodi, Ihsan;Sabbagh, Tahsin Toma;Al-salih, Osamah
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2020
  • Preventing or reducing the damage impact of lateral soil movements on piled foundations is highly dependent on understanding the behavior of passive piles. For this reason, a detailed experimental study is carried out, aimed to examine the influence of soil density, the depth of moving layer and pile spacing on the behavior of a 2×2 free-standing pile group subjected to a uniform profile of lateral soil movement. Results from 8 model tests comprise bending moment, shear force, soil reaction and deformations measured along the pile shaft using strain gauges and others probing tools were performed. It is found that soil density and the depth of moving layer have an opposite impact regarding the ultimate response of piles. A pile group embedded in dense sand requires less soil displacement to reach the ultimate soil reaction compared to those embedded in medium and loose sands. On the other hand, the larger the moving depth, the larger amount of lateral soil movement needs to develop the pile group its ultimate deformations. Furthermore, the group factor and the effect of pile spacing were highly related to the soil-structure interaction resulted from the transferring process of forces between pile rows with the existing of the rigid pile cap.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.293-312
    • /
    • 2022
  • Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.