• Title/Summary/Keyword: pitch

Search Result 4,217, Processing Time 0.024 seconds

Pitch Measurement of One-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (미터 소급성을 갖는 원자간력 현미경을 이용한 1차원 격자 피치 측정과 불확도 평가)

  • Kim Jong-Ahn;Kim Jae Wan;Park Byong Chon;Eom Tae Bong;Kang Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 2005
  • We measured the pitch of one-dimensional (ID) grating specimens using a metrological atomic force microscope (M-AFM). The ID grating specimens a.e often used as a magnification standard in nano-metrology, such as scanning probe microscopy (SPM) and scanning electron microscopy (SEM). Thus, we need to certify the pitch of grating specimens fur the meter-traceability in nano-metrology. To this end, an M-AFM was setup at KRISS. The M-AFM consists of a commercial AFM head module, a two-axis flexure hinge type nanoscanner with built-in capacitive sensors, and a two-axis heterodyne interferometer to establish the meter-traceability directly. Two kinds of ID grating specimens, each with the nominal pitch of 288 nm and 700 nm, were measured. The uncertainty in pitch measurement was evaluated according to Guide to the Expression of Uncertainty in Measurement. The pitch was calculated from 9 line scan profiles obtained at different positions with 100 ㎛ scan range. The expanded uncertainties (k = 2) in pitch measurement were 0.10 nm and 0.30 nm for the specimens with the nominal pitch of 288 nm and 700 nm. The measured pitch values were compared with those obtained using an optical diffractometer, and agreed within the range of the expanded uncertainty of pitch measurement. We also discussed the effect of averaging in the measurement of mean pitch using M-AFM and main components of uncertainty.

Intonation Training System (Visual Analysis Tool) and the application of French Intonation for Korean Learners (컴퓨터를 이용한 억양 교육 프로그램 개발 : 프랑스어 억양 교육을 중심으로)

  • Yu, Chang-Kyu;Son, Mi-Ra;Kim, Hyun-Gi
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.49-62
    • /
    • 1999
  • This study is concerned with the educational program Visual Analysis Tool (VAT) for sound development for foreign intonation using personal computer. The VAT can run on IBM-PC 386 compatible or higher. It shows the spectrogram, waveform, intensity and the pitch contour. The system can work freely on either waveform zoom in-out or the documentation of measured value. In this paper, intensity and pitch contour information were used. Twelve French sentences were recorded from a French conversational tape. And three Korean participated in this study. They spoke out twelve sentences repeatly and trid to make the same pitch contour - by visually matching their pitcgh contour to the native speaker's. A sentences were recorded again when the participants themselves became familiar with intonation, intensity and pauses. The difference of pitch contour(rising or falling), pitch value, energy, total duration of sentences and the boundary of rhythmic group between native speaker's and theirs before and after training were compared. The results were as following: 1) In a declarative sentence: a native speaker's general pitch contour falls at the end of sentences. But the participant's pitch contours were flat before training. 2) In an interrogative: the native speaker made his pitch contours it rise at the end of sentences with the exception of wh-questions (qu'est-ce que) and a pitch value varied a greath. In the interrogative 'S + V' form sentences, we found the pitch contour rose higher in comparison to other sentences and it varied a great deal. 3) In an exclamatory sentence: the pitch contour looked like a shape of a mountain. But the participants could not make it fall before or after training.

  • PDF

Effect of potassium permanganate pretreatment of pitch on the textural properties of pitch-based activated carbons

  • Kim, Dae-Won;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.167-170
    • /
    • 2011
  • Petroleum pitch-based activated carbons (ACs) were obtained in this work from a combination of pretreatment with different amounts of potassium permanganate ($KMnO_4$) and chemical activation with potassium hydroxide. The surface characteristics of the pitch after the $KMnO_4$ pretreatment were characterized by means of Fourier transform infrared spectroscopy (FT-IR). The structural characteristics of the pitch after the $KMnO_4$ pretreatment were determined by means of X-ray diffraction. The influence of the $KMnO_4$ treatment on the textural properties of the petroleum pitch-based ACs was investigated by means of $N_2$/77K adsorption isotherms. The investigation also involved the use of the Brunauer-Emmett-Teller equation and the Dubinin-Radushkevich method. The FT-IR results show that the pretreatment promotes the formation of surface oxygen functionalities and leads to an increase of the interplanar distance ($d_{002}$) of the functional groups induced between carbon layers. Moreover, the specific surface area of the pitch-based ACs increases in proportion to the amount of $KMnO_4$ pretreatment and reaches its highest value of 2334 $m^2$/g with 2 g of $KMnO_4$ because the surface oxygen groups of the pitch act as an active site during chemical activation.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Preparation of isotropic spinnable pitch and carbon fiber from biomass tar through the co-carbonization with ethylene bottom oil

  • Yang, Jianxiao;Shi, Kui;Li, Xuanke;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.25
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, we tried to prepare an isotropic spinnable pitch which can be useful to prepare the general purpose carbon fiber through the co-carbonization of biomass tar with ethylene bottom oil under two different preparation methods (atmospheric distillation, pressurized distillation). The results showed that the ethylene bottom oil added co-carbonization was very effective to decrease of the oxygen contents for obtaining a stable spinnable pitch. The pressurized distillation was more effective to reduce the oxygen functional groups of pitches than atmospheric distillation. The obtained spinnable pitch by the pressurized distillation showed higher pitch yield of 42% and lower oxygen content of 9.12% than the spinnable pitch by the atmospheric distillation. The carbon fiber derived from the pressurized distillation spinnable pitch by carbonization at $800^{\circ}C$ for 5 min showed that the higher tensile strength of carbon fiber was increased up to 800 MPa.

Bumpless Interconnect System for Fine-pitch Devices (Fine-pitch 소자 적용을 위한 bumpless 배선 시스템)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • The demand for fine-pitch devices is increasing due to an increase in I/O pin count, a reduction in power consumption, and a miniaturization of chip and package. In addition non-scalability of Cu pillar/Sn cap or Pb-free solder structure for fine-pitch interconnection leads to the development of bumpless interconnection system. Few bumpless interconnect systems such as BBUL technology, SAB technology, SAM technology, Cu-toCu thermocompression technology, and WOW's bumpless technology using an adhesive have been reviewed in this paper: The key requirements for Cu bumpless technology are the planarization, contamination-free surface, and surface activation.

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

A Study on Pitch Period Detection Algorithm Based on Rotation Transform of AMDF and Threshold

  • Seo, Hyun-Soo;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.178-183
    • /
    • 2006
  • As a lot of researches on the speech signal processing are performed due to the recent rapid development of the information-communication technology. the pitch period is used as an important element to various speech signal application fields such as the speech recognition. speaker identification. speech analysis. or speech synthesis. A variety of algorithms for the time and the frequency domains related with such pitch period detection have been suggested. One of the pitch detection algorithms for the time domain. AMDF (average magnitude difference function) uses distance between two valley points as the calculated pitch period. However, it has a problem that the algorithm becomes complex in selecting the valley points for the pitch period detection. Therefore, in this paper we proposed the modified AMDF(M-AMDF) algorithm which recognizes the entire minimum valley points as the pitch period of the speech signal by using the rotation transform of AMDF. In addition, a threshold is set to the beginning portion of speech so that it can be used as the selection criteria for the pitch period. Moreover the proposed algorithm is compared with the conventional ones by means of the simulation, and presents better properties than others.

  • PDF

Changes in CT Number and Noise Level according to Pitch in Spiral Image Acquisition (나선형영상획득에서 Pitch에 따른 CT 감약계수와 잡음의 변화)

  • Kang, SungJin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.981-989
    • /
    • 2020
  • In this study, a self-made customized phantom was used to quantitatively measure the change in CT number and noise according to the change of pitch. In order to acquire an image using the phantom, the inside of the phantom was filled with sterile distilled water. Inside the glass tube, a solution obtained by diluting the ratio of normal saline and contrast medium to 100%(NS), 400:1, 200:1, 100:1, 50:1, respectively, was placed and imaged. At this time, the pitch was divided into steps of 0, 0.35, 0.7, 1.05, and 1.4 for each dilution ratio of the solution and imaged, respectively. One-way ANOVA analysis were performed to verify whether the mean of the CT number and noise values measured in all ROIs by dilution ratio showed a significant difference according to the change in pitch. As a result of the experiment, there was no statistically significant difference in the change of the CT number according to the change in the pitch for each dilution ratio, but the noise value tended to increase with the increase of the pitch, and showed a statistically significant difference. In the spiral image acquisition of CT, noise can be changed to a significant level depending on the pitch. Therefore, it will be necessary to set the quality evaluation items and criteria for CT images using the spiral image acquisition method.