• Title/Summary/Keyword: plant hormone

Search Result 324, Processing Time 0.026 seconds

Analysis of Plant Hormones using GC-MS (GC-MS를 이용한 식물홀몬 분석)

  • 조광연
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s01
    • /
    • pp.26-32
    • /
    • 1989
  • The analytic principles of GC and MS were explained in relation to plant hormone analyses and the characteristics of two instruments were compared. The selection of column, condition of measurement and the method of ionization to get a good spectrum were also briefly described. Finally, the pre-treatment of sample by solvent extraction method to remove the unnecessary part of sample and the synthetic method, especially reagents and reaction condition, for the preparation of ether or ester derivative which can be easily vaporized in GC were explained.

  • PDF

Inhibitory effects of some medicinal plant extracts on the tyrosinase promoter activity on B16 mouse melanoma cells

  • Chin, Jong-Eon;Sun, Heung-Suk;Lee, Kwang-Jae;Choi, Tae-Jin;Ko, Yoo-Seung;Sohn, Hyun-Jung;Kim, Jeong-Joong;Jeon, Byung-Hoon;Blaise Lee, Hwang-Hee
    • Advances in Traditional Medicine
    • /
    • v.1 no.2
    • /
    • pp.6-13
    • /
    • 2000
  • Melanin is specifically produced in melanocytes. The pathway for melanin biosynthesis is mainly controlled by tyrosinase. To estimate the inhibitory effect of melanin biosynthesis from 31 medicinal plants extracts, we tested the inhibitory effects of the tyrosinase promoter on B16 mouse melanoma cells. The result of this study demonstrated that Mori Radicis Cortex and Castena Fractus extracts only in tested medicinal plant extracts have high inhibitory effects on tyrosinase promoters with very low cytotoxicity on B16 mouse melanoma cells. Therefore, extracts of Mori Radicis Cortex and Castena Fractus were evaluated as very effective negative regulators of tyrosinase gene expression.

  • PDF

H-1, C-13, and N-15 resonance assignments of ENOD40B, a plant peptide hormone

  • Young Kee Chae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • t ENOD40B, a plant peptide hormone, was doubly labeled with C-13 and N-15 by recombinant production in Escherichia coli. The peptide was prepared by affinity chromatography followed by protease cleavage and reverse-phase chromatography. To elucidate the mode of action against its receptor, sucrose synthase, we proceeded to assign the backbone and side-chain resonances using a set of double and triple resonance experiments. This result will be used to determine the three-dimensional structure of the peptide at its bound state as well as to observe the chemical shift changes upon binding.

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Enzyme-linked Immunosorbent Assay of Plant Hormones (효소면역학적 방법에 의한 식물홀몬 분석)

  • 노기안
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s01
    • /
    • pp.40-47
    • /
    • 1989
  • In spite of the development of highly sophisticated instrument, the precise quantitation of plant hormones still has many difficulties. Due to their high specificity, sensitivity and minimal sample purification steps, immunological assays have been widely applied for plant hormone assay. Enzme-linked immunosorbent assay technique for the determination of plant hormones was developed by Voller in 1978. Immunological assays are accomplished by competition of labeled tracer antigen and unlabeled antigen for a limited number of specific antibodies. The use of enzyme as replacement labels for radioisotopes enabled much of the sensitivity and specificity of radioimmunoassay (RIA) to be retained but without the inherent disadvantage of high capital cost, potential health hazard, and short shelf life of the labeled reactants.

  • PDF

Tyrosine phosphorylation as a signaling component for plant improvement

  • Park, Youn-Il;Yang, Hyo-Sik;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • Plant genome analyses, including Arabidopsis thaliana showed a large gene family of plant receptor kinases with various extracellular ligand-binding domain. Now intensively studies to understand physiological and cellular functions for higher plant receptor kinases in diverse and complex biological processes including plant growth, development, ligands perception including steroid hormone and plant-microbe interactions. Brassinosteroids (BRs) as a one of well know steroid hormone are plant growth hormones that control biomass accumulation and also tolerance to many biotic and abiotic stress conditions and hence are of relevance to agriculture. BRI1 receptor kinase, which is localized in plasma membrane in the cell sense BRs and it bind to a receptor protein known as BRASSINOSTEROID INSENSITIVE 1 (BRI1). Recently, we reported that BRI1 and its co-receptor, BRI1-ASSOCIATED KINASE (BAK1) autophosphorylated on tyrosine residue (s) in vitro and in vivo and thus are dual-specificity kinases. Other plant receptor kinases are also phosphorylated on tyrosine residue (s). Post-translational modifications (PTMs) can be studied by altering the residue modified by directed mutagenesis to mimic the modified state or to prevent the modification. These approaches are useful to not only characterize the regulatory role of a given modification, but may also provide opportunities for plant improvement.

Regulation of hormone-related genes involved in adventitious root formation in sweetpotato

  • Nie, Hualin;Kim, Sujung;Lee, Yongjae;Park, Hyungjun;Lee, Jeongeun;Kim, Jiseong;Kim, Doyeon;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.194-202
    • /
    • 2020
  • The sweetpotatoes (Ipomoea batatas) generate adventitious roots (ARs) from cut stems that develop into storage roots and make for an important means of propagation. However, few studies have investigated the hormones involved in AR development in sweetpotato. In this study, the expression patterns of hormone-related genes involved in AR formation were identified using the transcriptome data. RNA-seq data from stems grown for 0 and 3 days after cutting were analyzed. In addition, hormone-related genes were identified among differentially expressed genes (DEGs) and filtered genes, and cluster analysis was used to characterize expression patterns by function. Most hormone-related regulated genes expressed 3 days after growing the cut stems were abscisic acid (ABA)-related genes, followed by ethylene- and auxin-related genes. For ABA, the biosynthesis genes (including genes annotated to NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3)) and signal transduction and perception genes (including genes annotated to PROTEIN PHOSPHATASE 2Cs (PP2Cs)) tended to decrease. Expression patterns of auxin- and ethylene-related genes differed by function. These results suggest that ABA, auxin, and ethylene genes are involved in AR formation and that they may be regulated in a hormone function-dependent manner. These results contribute to the identification of hormone functions during AR formation and may contribute to understanding the mechanism of AR formation in the sweetpotato.

Alteration of plant hormones in transgenic rice (Oryza sativa L.) by overexpression of anti-apoptosis genes during salinity stress

  • Ubaidillah, Mohammad;Safitri, Fika Ayu;Lee, Sangkyu;Park, Gyu-Hwan;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.168-179
    • /
    • 2015
  • We previously identified the rice gene, OsSAP, as an encoder of a highly conserved putative senescence-associated protein that was shown to have anti-apoptotic activity. To confirm the role of OsSAP in inducing abiotic stress tolerance in rice, we introduced OsSAP and AtBI-1, a plant homologue of Bax inhibitor-1, under the control of the CaMV 35S promoter into the rice genome through Agrobacterium-mediated transformation. The OsSAP transformants showed a similar chlorophyll index after salinity treatments with AtBI-1. Furthermore, we compared the effects of salinity stress on leaves and roots by examining the hormone levels of abscisic acid (ABA), jasmonic acid (JA), gibberellic acid (GA3), and zeatin in transformants compared to the control. With the exception of phytohormones, stress-induced changes in hormone levels putatively related to stress tolerance have not been investigated previously. Hormonal level analysis confirmed the lower rate of stress in the transformants compared to the control. The levels of ABA and JA in OsSAP and AtBI-1 transformants were similar, where stress rates increased after one week and decreased after a two week period of drought; there was a slightly higher accumulation compared to the control. However, a similar trend was not observed for the level of zeatin, as the decrease in the level of zeatin accumulation differed in both OsSAP and AtBI-1 transformants for all genotypes during the early period of salinity stress. The GA3 level was detected under normal conditions, but not under salinity stress.

Induction and Culture of High Polyacetylene-Yielding Hairy Roots in Ballon Flower (Pathycodon grandiflorum) (도라지(Platycodon grandirorum) 뿌리조직에서 고농도 함유 모상근의 유도 및 배양)

  • Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.337-341
    • /
    • 1995
  • Hairy roots of Korean ballon flower (Platycodon grandiflorum A. DC) were induced from the root tissues infected with Agrobacterium rhizogenes ATCC 15834. Growth and polyacetylene [lobetyol (1), lobetyolin (2) and lobetyolinin (3)] production fo ten hairy root clones cultured in 1/4 Gamborg B5 (B5) liquid medium were determined. One selected hairy root clone (D6) grew well in hormone free-B5 liquid medium and showed maximum content of polyacetylenes at week 6 for 1 (0.375% dry wt) and at week 7 for 2 and 3 (3.030% and 0.206% dry wt, respectively) whose levels were much higher than those of the intact plant root (1:0.019%, 2:0.077% dry wt, 3 was not detected).

  • PDF

Procedures for Analyzing Ethylene by Gas Chromatograph (Gas Chromatograph를 이용한 에틸렌 분석 기술)

  • 이승구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s01
    • /
    • pp.33-39
    • /
    • 1989
  • Ethylene gas classified as one of five major plant hormones plays an important role in various plant metabolism. The precise analysis of ethylene production of plants or plant parts is a valuable research procedure because knowledge of ethylene production facilitates measures of the physiological activity within the tissue. This paper describes procedures for analyzing ethylene from plant tissues by gas chromatography and discusses problems associated with extracting gas samples either by introducing a vacuum to plant samples or by using a hypodermic syringe. Introduced are a continuous flow system for efficient analysis and an automated system for sampling, analyzing, calculating and recording ethylene production data.

  • PDF