• Title/Summary/Keyword: plasma modeling

Search Result 214, Processing Time 0.026 seconds

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Electrical & Electronic Materials
    • /
    • v.15 no.9
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

Numerical Modeling of an Inductively Coupled Plasma Based Remote Source for a Low Damage Etch Back System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.169-178
    • /
    • 2014
  • Fluid model based numerical analysis is done to simulate a low damage etch back system for 20 nm scale semiconductor fabrication. Etch back should be done conformally with very high material selectivity. One possible mechanism is three steps: reactive radical generation, adsorption and thermal desorption. In this study, plasma generation and transport steps are analyzed by a commercial plasma modeling software package, CFD-ACE+. Ar + $CF_4$ ICP was used as a model and the effect of reactive gas inlet position was investigated in 2D and 3D. At 200~300 mTorr of gas pressure, separated gas inlet scheme is analyzed to work well and generated higher density of F and $F_2$ radicals in the lower chamber region while suppressing ions reach to the wafer by a double layer conducting barrier.

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.3-6
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure, flow rate, input power density) and various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimization.

  • PDF

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

Prediction Model on Electrical Conductivity of High Density Metallic Plasma (고밀도 금속 플라즈마 전기전도도 예측모델)

  • Kyoungjin Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2022
  • This study introduces the calculation model of ionization composition and electrical conductivity for metallic plasma for practical application to modeling and simulation of modern electrical detonators. The present model includes the correction for non-ideality of dense plasma conditions which are expected in electrical explosion of bridge in detonators. The computational results for copper plasma show favorable agreement with experimental data for a wide range of plasma temperature and high density conditions and the model is proper for detonator modeling with good prediction accuracy.

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

Zero-Dimensional Modeling of Plasma Generator in Electrothermal Gun (전열포 플라즈마 생성장치의 영차원 해석모델)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • This paper introduces a zero-dimensional modeling on the plasma generation in electrothermal gun operation. The plasma generator consists of alumina bore and aluminum electrodes which is electrically powered by outer pulse forming network and, traditionally, its numerical simulations have employed time-dependent one-dimensional governing equations. However, by assuming isothermal approximation along the bore and choked bore exit condition, present analysis simplifies the mass and energy equations into zero-dimensional approximation of plasma conditions coupled with mass ablation model and plasma property evaluation. The numerical results show good agreement with the corresponding one-dimensional computations and thus verify the present modeling approach.