• Title/Summary/Keyword: plasma nitric oxide

Search Result 96, Processing Time 0.028 seconds

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Plasma Levels of Nitric Oxide Metabolites in Patients with Postpartum Depression (산후우울증 환자에서 혈중 Nitric Oxide Metabolites의 혈장 농도의 변화)

  • Lee, Bun-Hee;Kim, Kye Hyun;Shin, Young Chul;Kim, Jung Bum;Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • Background : Some reports have suggested that decreased nitric oxide metabolites($NO_x$) and activity of nitric oxide synthase could be related to the pathophysiology of depression. We evaluated plasma levels of $NO_x$ in pregnant women with and without postpartum depression at prenatal and postnatal period. Methods : The plasma concentrations of $NO_x$ were measured in 104 pregnant women in the third trimester and at 6 weeks postpartum and in 64 normal controls. The severity of depression and anxiety was measured with the Edinburgh Postnatal Depression Scale(EPDS), Beck Depression Inventory(BDI), and Beck Anxiety Scale(BAI). Results : Plasma $NO_x$ levels at 6 weeks postpartum were significantly lower in cases of postpartum major depression(EDPS scores${\geq}$13 points) than in cases without depression(EDPS scores${\leq}$9 points). Plasma $NO_x$ levels had significantly negative correlation with EPDS scores at 6 weeks postpartum. Conclusion : We demonstrate that decreased plasma $NO_x$ is associated with postpartum depression. Further studies are required to determine whether individual serum concentration of plasma $NO_x$ alone could predict maternal depression.

  • PDF

Effects of Dietary Intervention and Simvastatin on Plasma Nitric Oxide in Patients with Hyperlipidemia

  • Yim, Jungeun;Choue, Ryowon;Park, Changshin;Cha, Youngnam;Chyun, Jonghee
    • Nutritional Sciences
    • /
    • v.7 no.4
    • /
    • pp.214-217
    • /
    • 2004
  • Dietary intervention and simvastatin is beneficial in the prevention cardiovascular diseases by lowering plasma lipid levels. Endothelial dysfunction is associated with coronary artery disease and its risk factors and is reversed by dietary intervention. It has been suggested that hyperlipidemia contributes to the development of atherosclerosis by increasing inducible nitric oxide synthase (iNOS) expression via intimal thickening. Statins treatment has been found to decrease iNOS expression and atherogenensis in animal models. We hypothesized that dietary intervention and simvastatin therapy could decrease plasma nitric oxide in hypercholesterolemic patients, which would suggest the opportunity for modulation of iNOS expression through the use of statins in a clinical situation. We measured the plasma levels of nitrite and nitrate (NOx) in 19 hyperlipidemia patients. The subjects were under dietary intervention following simvastatin therapy for 12 weeks. As a result, the plasma level of NOx, stable metabolites of nitric oxide (NO), saw a two-fold elevation in hyperlipidemic patients as compared to normal levels. Although 12 weeks of dietary intervention did not lower NOx levels, subsequent 12-week simvastatin (10 mg/day) treatment, along with dietary intervention, lowered NOx levels significantly. This NOx reduction, induced by simvastatin therapy, positively correlated with lowered coronary risk factors (r=0.40, p=0.02). It indicated that simvastatin therapy decreases plasma NOx levels by, perhaps, decreasing iNOS expression or activity leading to the attenuation of the development of neointima.

Expression of Vascular Endothelin-1 and Nitric Oxide Synthase in Fructose-fed Hypertensive Rats (과당식이 고혈압 흰쥐에서 혈관 Endothelin-1과 산화질소합성효소의 발현)

  • Paek, Yun-Woong;Kim, Myung-Hoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.45-52
    • /
    • 2002
  • Rats that are fed a fructose-rich diet develop hypertension, insulin resistance, and hypertriglyceridemia. To elucidate whether altered expression levels of endothelin-1 and nitric oxide synthase are related to the development of insulin-resistant hypertension, we examined the present study. Male Sprague-Dawley rats were fed a fructose-rich diet for 5 weeks. Systolic blood pressure significantly increased in fructose-fed rats. While serum free fatty acid and plasma nitrite/nitrate levels did not significantly differ between the fructose-fed and control groups, plasma insulin and serum triglyceride concentrations significantly increased in the former. Endothelin-1 mRNA expression in the aorta increased in fructose-fed rats. Neither the protein expression of constitutive nitric oxide synthase nor that of inducible nitric oxide synthase were significantly affected by fructose feeding. However, nitrite/nitrate levels in the aorta were significantly increased. These results suggest that an increase in vascular endothelin-1 is an important contributing factor to the development of hypertension in fructose-fed rats. However, the vascular nitric oxide pathway may not be causally related to the development of fructose-induced hypertension.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Role of Nitric Oxide on the Neuropathic Pain in Streptozotocin-induced Diabetic Rats (Streptozotocin에 의해 유도된 당뇨병성 통증시 Nitric Oxide의 역할)

  • Choi, Jin-Jung;Joen, Byeong-Hwa;Yoon, Seok-Hwa;Lee, Young-Ho;Kim, Moo-Gang;Kim, Kwang-Jin
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • Background: It is controversial whether the change in nitric oxide (NO) expression in the dorsal root ganglia (DRG) may be responsible for developtment and/or maintenance of painful diabetic neuropathy. The aim of this study was to clarify the role of NO in the pathogenesis of painful diabetic neuropathy. Methods: The effect of L-nitroargine methylester (L-NAME) or sodium nitroprusside (SNP) on allodynia was measured in streptozotocin (STZ)-induced diabetic rats. NO concentration was measured in the cerebrospinal fluid (CSF) and plasma of the diabetic rats. NADPH-diaphorase (NADPH-d) histochemistry was performed on the DRG and spinal cords of the STZ-induced diabetic rats. Results: L-NAME, an inhibitor of nitric oxide synthase, alleviated allodynia, while SNP, a nitric oxide donor, aggravated allodynia in diabetic rats. Plasma NO level in the diabetic rats was significantly decreased compared with control rats. NO level in the CSF of diabetic rats did not differ from that of the control rats. NADPH-d positive cells were decreased in the DRG of diabetic rats. However, NADPH-d histochemistry in the diabetic spinal cord was not different from that of the control rats. Conclusions: Downregulation of NO expression in the diabetic rats may not be causally related to the development and/or maintenance of painful diabetic neuropathy.

  • PDF

Impaired Endothelium-Dependent Relaxation is Mediated by Reduced Production of Nitric Oxide in the Streptozotocin-Induced Diabetic Rats

  • Park, Kyoung-Sook;Kim, Cuk-Seong;Kang, Sang-Won;Park, Jin-Bong;Kim, Kwang-Jin;Chang, Seok-Jong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.263-270
    • /
    • 2000
  • To evaluate the involvement of nitric oxide production on the endothelium-dependent relaxation in diabetes, we have measured vascular and endothelial function and nitric oxide concentration, and the expression level of endothelial nitric oxide synthase in the streptozotocin-induced diabetic rats. Diabetic rats were induced by the injection of streptozotocin (50 mg/kg i.v.) in the Sprague-Dawley rats. Vasoconstrictor responses to norepinephrine (NE) showed that maximal contraction to norepinephrine $(10^{-5}\;M)$ was significantly enhanced in the aorta of diabetic rats. Endothelium-dependent relaxation induced by acetylcholine was markedly impaired in the aorta of diabetic rats, these responses were little improved by the pretreatment with indomethacin. However, endothelium-independent relaxation induced by nitroprusside was not altered in the diabetic rats. Plasma nitrite and nitrate $(NO_2/_3)$ levels in diabetic rats were significantly lower than in non-diabetic rats. Western blot analysis using a monoclonal antibody against endothelial cell nitric oxide synthase (eNOS) revealed that the protein level was lower in the aorta of diabetic rats than in non-diabetic rats. These data indicate that nitric oxide formation and eNOS expression is reduced in diabetes, and this would, in part, account for the impaired endothelium-dependent relaxation in the aorta of streptozotocin-induced diabetic rats.

  • PDF

Role of Endogenous Nitric Oxide in the Control of Renin Release

  • Lee, Je-Jung;Kim, Dong-Ho;Kim, Young-Jae;Kim, Won-Jae;Yoo, Kwang-Jay;Choi, Ki-Chul;Lee, Jong-Eun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 1994
  • The present study was undertaken to investigate the role of endogenous nitric oxide in renin release under different physiological conditions. In the first series of experiments, renin release was either inhibited by acute volume-expansion (VE) or stimulated by clipping one renal artery in the rat. VE was induced by intravenous infusion of saline (0.9% NaCl) up to 5% of the body weight over 45 min under thiopental (50 mg/kg, IP) anesthesia. VE caused a decrease of plasma renin concentration (PRC). With $N^G-nitro-L-arginine$ methyl ester $(L-NAME,\;5\;{\mu}g/kg\;per\;min)$ superadded to VE, PRC decreased further. The magnitude of increase in plasma atrial natriuretic peptide levels following VE was not affected by the L-NAME. In two-kidney, one clip rats, L-NAME-supplementation resulted in a decrease, and L-arginine-supplementation an increase of PRC. Plasma atrial natriuretic peptide levels were significantly lower in the L-arginine group than in the control. Blood pressure did not differ among the L-NAME, L-arginine, and control groups. In another series of experiments, the renin response to a blockade of NO synthesis was examined using in vitro preparations from isolated renal cortex. L-NAME significantly increased basal renin release, although it was without effect on the isoproterenol-stimulated release. These findings suggest that endogenous nitric oxide significantly contributes to the renin release. Since many factors may affect the renin release in vivo, an interaction between NO and renin under various pathophysiological states is to be further defined.

  • PDF

Correlation of Nitric Oxide and Corticosteroids Along the Course of Sepsis (패혈증의 경과에 따른 혈중 스테로이드와 Nitric Oxide의 연관성)

  • Lee, Keu Sung;Kim, Young Sun;Lee, Hyoung No;Park, Joo Hun;Oh, Yoon Jung;Sheen, Seung Soo;Choi, Young Hwa;Park, Kwang Joo;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.4
    • /
    • pp.308-313
    • /
    • 2007
  • Background: The nitric oxide (NO) released by inducible NO synthase (iNOS) plays an important role in the pathophysiology of sepsis. Corticosteroids also play a role in the hemodynamic and inflammatory reactions in sepsis. Both have been shown to have a relationship theoretically, but their correlation and clinical impacts have rarely been evaluated. Methods: 26 patients with sepsis and 14 healthy controls were enrolled in this study. The initial random plasma total NO and the serum cortisol levels were measured. The same measurements were serially carried out on the $3^{rd}$, $5^{th}$, and $7^{th}$ days. Results: The initial total plasma levels of NO and cortisol were higher in the patients with sepsis than in the healthy controls. The total NO levels were higher in patients with severe sepsis than in the those with mild sepsis. There was a correlation between the total NO and cortisol level throughout the study. Conclusion: In patients with sepsis, the levels of plasma NO and cortisol were well correlated during the first week of sepsis, which suggests an interrelationship. However, the clinical and pathogenetic implications await further evaluation.

Regulatory Role of Nitric Oxide on Atrial Natriuretic Peptide System in Normotensive and Hypertensive Rats

  • Choi, Eun-Hah;Kim, Mi-Won;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.79-82
    • /
    • 1997
  • The present study was aimed to explore an interaction between endothelium-derived nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in normotensive and hypertensive states. Rats were made two-kidney, one clip (2K1C) hypertensive and supplemented with either $N^G-nitro-L-arginine$ methyl ester (L-NAME, 5 mg/100 ml drinking water) or L-arginine hydrochloride (400 mg/100 ml drinking water). One group supplied with normal tap water served as control. Sham-clipped rats were also divided into the L-NAME, L-arginine, and control groups. The plasma levels and atrial contents of ANP were determined at day 28 following clipping the renal artery. In 2K1C rats, the plasma level of ANP was higher and the atrial content was lower than in the sham-clipped control. L-Arginine increased the atrial content of ANP in association with a decreased plasma ANP, whereas L-NAME significantly affected neither parameter. The increase of blood pressure in 2K1C rats was not affected by L-arginine or L-NAME. In sham-clipped rats, the plasma level of ANP was significantly increased by L-NAME along with an increase in blood pressure. On the contrary, L-arginine did not affect the blood pressure or plasma ANP. The atrial content of ANP was significantly altered neither by L-arginine nor by L-NAME. These results suggest that NO plays a tonic inhibitory role on the ANP release with concomitant increases of the atrial tissue content. In addition, hypertension is suggested to modify the release and tissue storage of ANP.

  • PDF