• Title/Summary/Keyword: plasma technique

Search Result 746, Processing Time 0.031 seconds

A Study on the Optimal Design of 5 kW Plasma Discharger (5kW급 플라즈마 방전장치 설계 최적화의 관한 연구)

  • Noh, Hyun-Kyu;Shin, Chul-Jun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2016
  • This paper presents a study on the design optimization of a 5 kW plasma discharger for driving plasma reactor. The proposed study is composed of a high-frequency inverter based on the full-bridge circuit using soft switching techniques for high-frequency switching. The switching frequency in the operating region is the area of 130-200 kHz. By applying the LC resonance technique and a variable switching frequency, control technique is designed to be stable under changes in the load characteristics of the plasma reactor. This paper presents a quantitative analysis technique for design optimization. Experiments are performed according to load characteristic variations depending on the vacuum of the plasma reactor. This paper has verified the topology and design method for the 5 kW plasma discharger design.

Advanced Microwave Plasma Technology for Liquid Treatment

  • Toyoda, Hirotaka;Takahashi, T.;Takada, N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.121.1-121.1
    • /
    • 2014
  • Recently, much attention has been given to plasma production under liquid and its applications [1]. However, most of plasma production techniques reported so far utilize high voltage dc, ac, rf or microwave power [2], where damage to discharge electrodes and small discharge volume are remained issues. As an alternative of plasma production method under liquid, we have proposed pulsed microwave excited plasma using slot antenna, where damage to the slot electrode can be minimized and plasma volume can be increased. We have also reported improvement of treatment efficiency with use of reduced-pressure condition during the discharge [3]. To realize low pressure conditions in liquid, various alternative technique can be considered. One possible technique is simultaneous injection of microwave power and ultrasonic wave. Ultrasonic wave induces pressure fluctuation with the wave propagation and is so far used for cavitation production in the water. We propose utilization of reduced pressure induced by ultrasonic cavitation for improvement of the plasma production. Correlation between the plasma production and the ultrasonic power will be discussed.

  • PDF

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

Enhanced Performance of the OLED with Plasma Treated ITO and Plasma Polymerized Methyl Methacrylate Buffer Layer (ITO 플라즈마 표면처리와 ppMMA 버퍼층으로 제작한 OLED의 발광특성)

  • Lim Jae-Sung;Shin Paik-Kvun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • Transparent indium tin oxide (ITO) anode surface was modified using $O_3$ Plasma and organic ultrathin buffer layers were deposited on the ITO surface using 13.56 MHz RF plasma polymerization technique. The EL efficiency, operating voltage and lifetime of the organic light-emitting device (OLED) were investigated in order to study the effect of the plasma surface treatment and role of plasma polymerized organic ultrathin buffer layer. Poly methylmethacrylate (PMMA) layers were plasma polymerized on the ITO anode as buffer layer between anode and hole transport layer (HTL). The plasma polymerization of the organic ultrathin layer were carried out at a homemade capacitive-coupled RF plasma equipment. N,N'-diphenyl-N,N'(3- methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxyquinolinato) Aluminum $(Alq_3)$ as both emitting layer (EML)/electron transport layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Effects of the plasma surface treatment of ITO and plasma polymerized buffer layers on the OLED performance were discussed.

Neural Network Recognition of Scanning Electron Microscope Image for Plasma Diagnosis (플라즈마 진단을 위한 Scanning Electron Microscope Image의 신경망 인식 모델)

  • Ko, Woo-Ram;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.132-134
    • /
    • 2006
  • To improve equipment throughput and device yield, a malfunction in plasma equipment should be accurately diagnosed. A recognition model for plasma diagnosis was constructed by applying neural network to scanning electron microscope (SEM) image of plasma-etched patterns. The experimental data were collected from a plasma etching of tungsten thin films. Faults in plasma were generated by simulating a variation in process parameters. Feature vectors were obtained by applying direct and wavelet techniques to SEM Images. The wavelet techniques generated three feature vectors composed of detailed components. The diagnosis models constructed were evaluated in terms of the recognition accuracy. The direct technique yielded much smaller recognition accuracy with respect to the wavelet technique. The improvement was about 82%. This demonstrates that the direct method is more effective in constructing a neural network model of SEM profile information.

  • PDF

Plasma Impedance Monitoring with Real-time Cluster Analysis for RF Plasma Etching Endpoint Detection of Dielectric Layers

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.123.2-123.2
    • /
    • 2013
  • Etching endpoint detection with plasma impedance monitoring (PIM) is demonstrated for small area dielectric layers inductive coupled plasma etching. The endpoint is determined by the impedance harmonic signals variation from the I-V monitoring system. Measuring plasma impedance has been examined as a relatively simple method of detecting variations in plasma and surface conditions without contamination at low cost. Cluster analysis algorithm is modified and applied to real-time endpoint detection for sensitivity enhancement in this work. For verification, the detected endpoint by PIM and real-time cluster analysis is compared with widely used optical emission spectroscopy (OES) signals. The proposed technique shows clear improvement of sensitivity with significant noise reduction when it is compared with OES signals. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as end point detection.

  • PDF

ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA (아크 플라즈마에 의한 PTFE 노즐 용삭현상)

  • Lee J.C.;Kim Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF

Research of Nitriding Process on Austenite Stainless Steel with Plasma Immersion Ion Beam (플라스마 이온증착 기술을 이용한 스테인리스강의 질화처리에 관한 연구)

  • Kim, Jae-Dol;Park, Il-Soo;Ok, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • Plasma immersion ion beam (PIIB) nitriding process is an environmentally benign and cost-effective process, and offers the potential of producing high dose of nitrogen ions in a way of simple, fast and economic technique for the high plasma flux treatment of large surface area with nitrogen ion source gas. In this report PIIB nitriding technique was used for nitriding on austenite stainless steel of AISI304 with plasma treatment at $250{\sim}500^{\circ}C$ for 4 hours, and with the working gas pressure of $2.67{\times}10^{-1}$ Pa in vacuum condition. This PIIB process might prove the advantage of the low energy high flux of ion bombardment and enhance the tribological or mechanical properties of austenite stainless steel by nitriding, Furthermore, PIIB showed a useful surface modification technique for the nitriding an irregularly shaped three dimensional workpiece of austenite stainless steel and for the improvement of surface properties of AISI 304, such as hardness and strength

Fabrication of ITO/InP solar cells by employing H$_{2}$S plasma passivation technique (H$_{2}$S 플라즈마 passivation 방법을 응용한 ITO/InP 위성용 태양전지의 제작)

  • 이영철;한교용
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.59-65
    • /
    • 1998
  • In order to simulataneously achieve surface type conversion and sulfur passivation of p-type InP, a Ha$_{2}$S plasma dry passivation technique was firstly proposed and successfully applied to the fabrication of ITO/InP solar cells. This new technique was expected to improve the performance of solar cells. The devices, fabricated by changing the process parameters such as RF power and plasma exposure time, were characterized and PL measurements were performed to investigate the passivation effects. As a result, H$_{2}$S plasma treated solar cells demonstrated better performance than that of (NH$_{4}$)$_{2}$S$_{x}$ treated ones.s.

  • PDF

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.